• Title/Summary/Keyword: 제동장치를 이용한 통합운동제어장치

Search Result 2, Processing Time 0.024 seconds

A Study on the Integrated Dynamic Control System to Improve the Lateral Dynamics and Ride Comfort of SUV Vehicles (SUV 차량의 횡방향 운동 및 승차감 개선을 위한 제동장치를 이용한 통합운동제어장치의 연구)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2018
  • This paper describes an Integrate Dynamic Control system with Brake System (IDCB) for SUV vehicles. The system was developed to stabilize the lateral dynamics, maintain the steerability and improve the ride comfort on various roads. A fuzzy logic control method is used to design the IDCB. The performance of the IDCB is validated under different road and driving conditions. The results show that the IDCB tracks the reference yaw rate under all tested conditions; in addition, it reduces the body slip angle and roll angle. When a vehicle runs on a split-${\mu}$ road and a brake input is applied, the IDCB virtually eliminates the lateral dynamics. Thus, the IDCB improves the lateral stability, preserves the steerability and enhances the ride comfort of vehicles.

Development of Vehicle Integrated Dynamics Control System with Brake System Control (제동 장치를 이용한 차량통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.591-597
    • /
    • 2017
  • This study is to develop a vehicle Integrated Dynamics Control System(IDCB) that can stabilize the lateral dynamics and maintain steerability. To accomplish this task, an eight degree of freedom vehicle model and a nonlinear observer are designed. The IDCB independently controls the brake systems of four wheels with a fuzzy logic control and a sliding model control. The result shows that the nonlinear observer produced satisfactory results. IDCB tracked the reference yaw rate and reduced the body slip angle under all tested conditions. It indicates that the IDCB enhanced lateral stability and preserved steerability.