• Title/Summary/Keyword: 제동방식

Search Result 71, Processing Time 0.026 seconds

Design of Small Wind Power System DC Voltage Controller for Over-Voltage Protection through Dynamic Brake Resistor at Over Wind Speed Condition (소형풍력 발전시스템의 과풍속 조건에서 제동 저항을 통한 과전압 방지 DC 전압 제어기 설계)

  • Yang, Byung-Ik;Song, Seung-Ho;Lim, Duk-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.91-92
    • /
    • 2017
  • 풍력 발전 시스템에서 정격 풍속 이상의 바람에 대응하기 위해서는 일반적으로 전기적 브레이크와 기계적 브레이크가 요구된다. 기계적 브레이크는 상대적으로 응답성이 느리며 그 시간 동안 발전기 rpm 증가에 따른 DC전압 상승에 대응하는 전기적 브레이크의 역할이 시스템 안정성에 있어 매우 중요한 요소이다. 전기적 브레이크 중에서도 소형풍력 발전시스템에서는 DB(Dynamic Brake)저항을 통해 부하를 걸어주는 방식이 주로 쓰인다. DB 저항 구동에 있어 히스테리시스 루프에 기반한 PWM제어가 일반적으로 통용되는 방식이다. 이러한 방식과 비교하여 제어 안정성, 전압 오버슈트 등의 면에서 우수한 DB저항 제어 방식을 제안하며 히스테리시스 방식과 과도상태 정상상태 특성 비교 및 성능 분석을 시뮬레이션 결과를 통해 제시한다.

  • PDF

PWM braking system with a small wind turbine (PWM 방식을 이용한 소형풍력 발전기 제동 시스템)

  • Kim, Sang-Man;Moon, Chae-Joo;Jeong, Moon-Seon;Park, Byeong-Ju;Lee, Kyung-Sung;Jeong, Gwon-Seong
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.437-438
    • /
    • 2012
  • 대부분 소형풍력발전은 운전 범위 이상이 될 경우 시스템 보호를 위해 Dump Load 방식 또는 전기자 반작용을 사용하며 순간 단락 시 돌발 단락 전류에 의해 풍력 발전기의 기계적 손상이 발생 된다. 본 논문에서는 ATmega 128을 이용한 PWM의 제어 방식 적용하여 돌발 단락 전류 억제하는 시스템을 구성 하고자 한다.

  • PDF

한국형 고속전철의 신경망, 제어네트웍(TCN)

  • 박재현
    • 전기의세계
    • /
    • v.53 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • 고속전철은 비행기가 활주로에서 이륙하는 속도를 능가하는 시속 300km이상의 고속으로 운영되는 열차로서 고도의 제어기술이 총동원되는 기술의 결합체이다. 고속전철내의 전자 장치들은 단지 추진이나 제동의 기능뿐만 아니라 차량의 상태에 대한 모니터 링, 온라인 진단, 여행자 정보서비스 및 테스트용 백업 등 다양한 기능을 수행하게 되어 있으며, 이러한 기능들을 보다 안전하고도 효율적으로 수행하기 위하여 분산제어방식으로 구축되고 있다. 특히 20량까지 연결하여 운영하는 고속전철의 특성상 각 차량에 고루 분산되어 있는 분산제어시스템을 효과적으로 지원하기 위한 제어네트웍은 고속전철 제어시스템의 중추적인 역할을 담당하고 있다고 하겠다.(중략)

  • PDF

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

A Study on the Impronement on the Response of Solenoid-Flow control type ABS Modulator (솔레이노-유량제어 방식 ABS의 응답성 향상에 관한 연구)

  • 송창섭;김형태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.569-572
    • /
    • 1995
  • In this study, a hydraulic modulator of solenoid-flow type ABS, the master sylinder, and the wheel cylinder are modeled and simulated for increasing pressure characteristics of the brake. Response can be predicted by external force of the the master sylinder and pulses to the solenoid valve as input. For a demonstration of simulation result, experiment is done under the same condition as simulation condition after experimental apparatus of 1/4 car model is constructed. When factors of flow control valve are changed, the effect of each factor to response, how to improve response, and the most critical factors are considered from simulated result of time constant.

  • PDF

Braking Pressure Characteristics of Solenoid-Flow Control Type ABS by PWM Control (PWM 제어에 의한 솔레노이드-유량제어방식 ABS의 제동압력 특성)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.146-154
    • /
    • 1997
  • Solenoid-folw control type ABS is used with a 'dump and reapply' pressure control arrangement instead of using 2/2 (normal open/close) solenoid valves in convensional systems(sol. -sol. control type), a flow control valve is used which replaces the (no) inlet valve. The flow control valve controls fluid flow providing a nearly constant reapply rate( .theta. ) after the dump plase of ABS operation. In this study, to investigate a characteristics of brake pressure by PWM control, test rig was consisted of ABS hydraulic modulator, digital controller, pneumatic power supply and brake master cylinder. For comparison with experi- mental results, system modelling and computer simulation were performed. As a result, experiment results showed fairly agreement with the simulation. Also, it is shown that the pressure gradient (tan .theta. ) is affected by pressure, frequency, duty ratio and expressed with an exponential funtion.

  • PDF

Analysis of Operational Issues for ICT-based On-Board Train Control System (ICT 기반 차상제어시스템 개발에 따른 운영 이슈 분석)

  • Kim, Young-Hoon;Choi, Won-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.575-583
    • /
    • 2011
  • In order to minimize the maintenance cost at local lines, Information & Communication Technology based onboard train control system is being developed. Unlike the central traffic control based fixed block system, this system use a moving block method and railway driver direct control switch and railway crossing. The purpose of this paper is to analyze the concerned main operational issues are as follows: the preparation of train operation, drivability, the role of driver and controller, block system and cost. We defined the role of driver and driver's input data for train service, and we designed the business process of driver using UML tool. We considered the aspect of drivability, DMI is needed to support the braking moment for the driver and driver training simulator. We designed the driver business process for control of switch and railway crossing. We analyzed the fixed block system and moving block system to confirm the difference with the existing operational method. The cost analysis structure is also needed for the operation cost comparison.

A Study On The Implementation Of Isolated Type Power Regenerative Converter (전원회생 절연형 컨버터의 실증을 위한 기본연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2019
  • The use of regenerative energy in AC drive systems has been an issue since the system became an industry standard in the 1990s. According to the quantity of the regenerative energy, the braking resistor in the case of low capacity was common. However the use of such low amount of energy is actively discussed, and the method of mounting the regenerative converter is becoming popular. In this paper, an isolated regenerative converter for reducing the circulating current which is mentioned as the biggest disadvantage of the conventional power regenerative converter system is proposed. In order to save energy, employing a power regenerative converter system for utilizing regenerative energy in an AC drive system is common. However due to the structure of the system, a circulating current is generated, which inevitably causes a decrease in efficiency. In this paper, an isolated regenerative power converter system is proposed to solve the circulating current and computer simulation to verify the possibility. The simulation results show that 20% of the circulating current of the conventional system does not appear in the proposed system, and the validity of the proposed system is confirmed.