• Title/Summary/Keyword: 제곱합동

Search Result 9, Processing Time 0.03 seconds

The Integer Factorization Method Based on Congruence of Squares (제곱합동 기반 소인수분해법)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.185-189
    • /
    • 2012
  • It is almost impossible to directly find the prime factor, p,q of a large semiprime, n=pq. So Most of the integer factorization algorithms uses a indirect method that find the prime factor of the p=GCD(a-b,n),q=GCD(a+b,n) after getting the congruence of squares of the $a^2{\equiv}b^2$(mod n). Many methods of getting the congruence of squares have proposed, but it is not easy to get with RSA number of greater than a 100-digit number. This paper proposes a fast algorithm to get the congruence of squares. The proposed algorithm succeeded in getting the congruence of squares to a 19-digit number.

The n+1 Integer Factorization Algorithm (n+1 소인수분해 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • It is very difficult to factorize composite number, $n=pq$ to integer factorization, p and q that is almost similar length of digits. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$ (mod $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$) and deciding factor base, B. This paper proposes a efficient algorithm. The proposed algorithm extracts B from integer factorization with 3 digits prime numbers of $n+1$ and decides f, the combination of B. And then it obtains $x$(this is, $a=fxy$, $\sqrt{n}$ < $a$ < $\sqrt{2n}$) from integer factorization of $n-2$ and gets $y=\frac{a}{fx}$, $y_1$={1,3,7,9}. Our algorithm is much more effective in comparison with the conventional Fermat algorithm that sequentially finds $\sqrt{n}$ < $a$.

The κ-Fermat's Integer Factorization Algorithm (κ-페르마 소인수분해 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • It is very difficult problem to factorize composite number. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$(mode $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$). Fermat's algorithm that is base of congruence of squares finds $a^2-b^2=n$. This paper proposes the method to find $a^2-b^2=kn$, ($k=1,2,{\cdots}$). It is supposed $b_1$=0 or 5 to be surely, and b is a double number. First, the proposed method decides $k$ by getting kn that satisfies $b_1=0$ and $b_1=5$ about $n_2n_1$. Second, it decides $a_2a_1$ that satisfies $a^2-b^2=kn$. Third, it figures out ($a,b$) from $a^2-b^2=kn$ about $a_2a_1$ as deciding $\sqrt{kn}$ < $a$ < $\sqrt{(k+1)n}$ that is in $kn$ < $a^2$ < $(k+1)n$. The proposed algorithm is much more effective in comparison with the conventional Fermat algorithm.

An Analysis on the Pedagogical Aspect of Quadratic Function Graphs Based on Linear Function Graphs (일차함수의 그래프에 기초한 이차함수의 그래프에 대한 교수학적 분석)

  • Kim, Jin-Hwan
    • School Mathematics
    • /
    • v.10 no.1
    • /
    • pp.43-61
    • /
    • 2008
  • This study is based on the pedagogical aspect that both connections of mathematical concepts and a geometric approach enhance the understanding of structures in school mathematics. This study is to investigate the graphical properties of quadratic functions such as symmetry, coordinates of vertex, intercepts and congruency through the geometric properties of graphs of linear functions. From this investigation this study would give suggestions on a new pedagogical perspective about current teaching and learning methods of quadratic function graphs which is focused on routine algebraic transformation of the completing squares. In addition, this study would provide the topic of quadratic function graphs with the understanding of geometric perspective.

  • PDF

A comparison study on the estimation of the relative risk for the unemployed rate in small area (소지역의 실업률에 대한 상대위험도의 추정에 관한 비교연구)

  • Park, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.349-356
    • /
    • 2009
  • In this study, we suggest the estimation method of the relative risk for the unemployment statistics of a small area such as si, gun, gu in Korea. The considered method are the usual pooled estimator, weighted estimator with the inverse of log-variance as weights, and the Jackknife estimator. And we compare with the efficiency of the three estimators by estimating the bias and mean square errors using real data from the 2002 Economically Active Population Survey of Gyeonggi-do. We compute the unemployed rate of male and female in small areas, and then estimate the common relative risk for the unemployed rate between male and female. Also, the stability and reliability of the three estimators for the common relative risk was evaluated using the RB(relative bias) and the RRMSE(relative root mean square error) of these estimators. Finally, the Jackknife estimator turned out to be much more efficient than the other estimators.

  • PDF

The determinants of the youth employment rate using panel tobit model (패널 토빗모형을 이용한 청년채용비율 결정요인 분석)

  • Park, Sungik;Ryu, Jangsoo;Kim, Jonghan;Cho, Jangsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.853-862
    • /
    • 2017
  • In this study, we analyse the determinants of the youth employment rate of public agencies and local public enterprises. On the other hand the youth employment rate contains information of the youth employment rate and the size of the youth employment. We use pooled tobit model and panel tobit model since dependent variable is a censored form observed only in a certain area. The results of the analysis are summarized as follows. First, the panel tobit model is more statistically significant as compared to the combined tobit model. Second, the youth employment rate is more statistically significantly higher in 2014 and 2015 than in 2011. Third, the youth employment rate in public enterprises is more statistically significantly higher than that in local public agencies. Finally, the higher the average wage is, the lower the youth employment ratio is.

Integer Factorization for Decryption (암호해독을 위한 소인수분해)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.221-228
    • /
    • 2013
  • It is impossible directly to find a prime number p,q of a large semiprime n = pq using Trial Division method. So the most of the factorization algorithms use the indirection method which finds a prime number of p = GCD(a-b, n), q=GCD(a+b, n); get with a congruence of squares of $a^2{\equiv}b^2$ (mod n). It is just known the fact which the area that selects p and q about n=pq is between $10{\cdots}00$ < p < $\sqrt{n}$ and $\sqrt{n}$ < q < $99{\cdots}9$ based on $\sqrt{n}$ in the range, [$10{\cdots}01$, $99{\cdots}9$] of $l(p)=l(q)=l(\sqrt{n})=0.5l(n)$. This paper proposes the method that reduces the range of p using information obtained from n. The proposed method uses the method that sets to $p_{min}=n_{LR}$, $q_{min}=n_{RL}$; divide into $n=n_{LR}+n_{RL}$, $l(n_{LR})=l(n_{RL})=l(\sqrt{n})$. The proposed method is more effective from minimum 17.79% to maxmimum 90.17% than the method that reduces using $\sqrt{n}$ information.

A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA (RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.71-76
    • /
    • 2014
  • There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.

Hong Gil Ju(洪吉周)'s Algebra (홍길주(洪吉周)의 대수학(代數學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we investigate the part dealing with algebra in Hong Gil Ju's GiHaSinSul to analyze his algebraic structure. The book consists of three parts. In the first part SangChuEokSan, he just renames Die jie hu zheng(疊借互徵) in Shu li jing yun to SangChuEokSan and adds a few examples. In the second part GaeBangMongGu, he obtains the following identities: $$n^2=n(n-1)+n=2S_{n-1}^1+S_n^0;\;n^3=n(n-1)(n+1)+n=6S_{n-1}^2+S_n^0$$; $$n^4=(n-1)n^2(n+1)+n(n-1)+n=12T_{n-1}^2+2S_{n-1}^1+S_n^0$$; $$n^5=2\sum_{k=1}^{n-1}5S_k^1(1+S_k^1)+S_n^0$$ where $S_n^0=n,\;S_n^{m+1}={\sum}_{k=1}^nS_k^m,\;T_n^1={\sum}_{k=1}^nk^2,\;and\;T_n^2={\sum}_{k=1}^nT_k^1$, and then applies these identities to find the nth roots $(2{\leq}n{\leq}5)$. Finally in JabSwoeSuCho, he introduces the quotient ring Z/(9) of the ring Z of integers to solve a system of congruence equations and also establishes a geometric procedure to obtain golden sections from a given one.

  • PDF