• Title/Summary/Keyword: 정화식물

Search Result 314, Processing Time 0.026 seconds

Photochemical Oxidants Damage in Rice Plants (Photochemical Oxidants에 의한 수도피해(水稻被害) 해석(解析))

  • Jeong, Young-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.103-107
    • /
    • 1983
  • The effect of photochemical oxidants on rice plants was measured by growing the rice plants Nihonbare in pot in charcoal-manganese oxide filtered atmosphere and non-filtered air. Visible injury on the leaf blades of rice plants were observed in plants grown under the unfiltered air chamber, but plants under filtered air chamber were free from any injury. Fresh weight of stem and root at maximum tillering stage in unfiltered chamber were 16.8 and 46.4% less than filtered air chamber, respectively. Grain yield in unfiltered air chamber was also reduced by 14.7% compared to that of filtered air chamber. And the reduced yield paralleled increase in concentration of oxidants in the atmosphere at the experimental site. ABA content in rice plants cultivated in unfiltered air chamber was higher than in filtered air chamber, but the root activity of rice plants in unfiltered air chamber was remarkably decreased.

  • PDF

Coastal management using ecosystem function of coastal marshes (연안습지의 생태기능을 이용한 연안환경관리)

  • Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.2 no.2
    • /
    • pp.159-166
    • /
    • 2000
  • 연안습지에서는 생태적으로 많은 생산물이 만들어진다고 평가되어 왔다. 이런 점들을 이용하여 연안습지를 연안환경관리에 적용하면 수질정화 등 다양한 효과를 볼 수 있다. 생태계 기능중 에너지흐름과 유기물, 영양염류가 연안습지의 수질정화에 중요하게 관계된다. 연안습지는 수생식물이 식재된 공간을 거치면서 처리되고, 토사나 오염물질의 유입을 방지하기 위한 공간의 조성과 바닥에서 영양염의 흡수 및 식물플랑크톤을 억제하는 방법이 적용될 수 있다.

  • PDF

A Study on User's Opinion for Designing of Multi-Functional Plant Applications (복합적 기능의 식물 애플리케이션 디자인을 위한 사용자 조사)

  • Lee, Ha Na;Park, Han Na;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.4
    • /
    • pp.297-308
    • /
    • 2019
  • Air pollution due to the fine dust level updating every day, and the problem of indoor air pollution due to ventilation difficulties and indoor discharge pollutants is also serious. In order to improve the indoor air quality, the air purification effect using the plants is prominent. In this study was started to investigated the living environment of modern people, the risk of indoor air pollution and the improvement function of plants, and to activate plant application. The purpose of this study is to analyze the main functions and design status of domestic and overseas plant - related applications, and to understand the actual use of modern plant applications and to help them learn more convenient plant - related knowledge. Therefore, this paper attempted to establish a basis for suggesting a new plant application by conducting a survey on the health effects of indoor air pollution and user awareness of plant - related applications. The results and contents of the study are as follows. First, as a theoretical review, indoor air pollution is more dangerous to modern people who have a high proportion of indoor living time and adversely affects their health. In order to solve such a problem, it has been shown that air conditioning and stress reduction can be effectively achieved by placing plants in the indoor space. Second, the analysis of the previous study shows the risk of indoor air pollution and its adverse effects on health. In addition, I have been able to find some researches related to the improvement of the indoor air by using the air purifying plants, and I can see the improvement of the user's behavior through the development or improvement of the application. Third, as a result of the survey on the status of domestic and overseas plant application, the main function of the application having high installation number was watering notification, provision of basic information of plants, and most of the functions were plant discerment through cameras. Fourth, most of the survey respondents have either raised or raised plants. Those who have little experience with plant applications have also shown positive feedback in the future on the use of plant-related applications. In addition, due to social problems such as air pollution, air purification using plants and functional plants showed high interest. Based on these results, we propose the need for a multi-functional plant application that can improve the indoor air pollution and facilitate the provision of information related to it.

Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants (근권세균과 식물을 이용한 유류 오염 토양의 생물복원)

  • Kim Ji-Young;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

A Study on IT System Design for Eco-Amenity (식물을 이용한 실내공기정화용 정보시스템 설계에 대한 연구)

  • Noh, Yong-Deok;Lee, Jung-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.971-976
    • /
    • 2006
  • Recently, people is interested in the indoor air pollution because of the well-being life. One of the effective way to remove the air pollutants is to use the eco-friendly houseplants. Eco-friendly houseplants absorb substances out of the stomata in their leaves and improve the indoor environment by plant emission such as phytochemical, anion, etc. In this paper, Eco-Amenity IT system is discussed which provide the data about the eco-friendly plants and related management information depending on the indoor air pollutants.

Phytoremediation Technology with Using Water Celery (Oenanthe stolonifer DC.) to Clean up Heavy Metals in the Contaminated Wastewater (미나리 재배에 의한 중금속 오염수의 식물정화)

  • Park, Jong-Sun;Han, Sung-Su;Yoon, Duck-Joong;Shin, Joung-Du
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The removal rate of heavy metals from the wastewater, the accumulation and translocation of heavy metals in plants after transplanting, and the responses of water celery growth with different wastewater treatments were investigated to determine the potential ability of green-remediation with hydroponic culture of water celery. The removal rate and translocation of Cd, Cu, Ni and Pb from different wastewater to plants were compared with cultivation periods after transplanting. The removal rate of heavy metals from wastewater was different with each treatment but increased with growing periods of water celery plants. The removal rate of Cd, Cu, Ni and Pb in Artificial solution, Artificial solution+EDTA, Munmark industrical wastewater, Jungsun minewater is ranged from 22 to 73%, from 28 to 100%, from 13 to 92% and from 41 to 100% at 6 days after transplanting, respectively. The translocations of Cd, Cu, Ni and Pb from roots to shoots in Artificial solution, Artificial solution+EDTA, Munmark industrical wastewater, Jungsun minewater are ranged from 14 to 28%. 8 to 30%. from 28 to 45% and from 2 to 15% at 12 days after transplanting, respectively. In plant growth responses, it appears to be inhibited the plant growth over all treatments excepts for Munmark industrial wastewater in these glowing periods. Therefore the water celery might play a useful role in phytoremediation to clean up wastewater contaminated with Cd, Cu, Ni or Pb.

Life Cycle Assessment of Activated Carbon Production System by Using Poplar (포플러를 이용한 활성탄 제조 시스템에 대한 전과정 평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.725-732
    • /
    • 2014
  • Phytoremediation is a technology to mitigate the pollutant concentrations such as metals, pesticides, solvents, oils, or others in contaminated water and soils with plants. The plants absorb contaminants through the root and store them in the root, stems, or leaves. Rapid growth trees such as poplar are used to remove low concentrated contaminants eco-friendly and economically in a wide contaminated region. This study was practiced to evaluate an activated carbon production system by using poplar wood discarded after phytoremediation. Life cycle assessment methodology was used to analyze environmental impacts of the system, and the functional unit was one ton of harvested poplar. It was estimated that the small size rotary kiln for activated carbon production from poplar wood had an environmental benefit in optimized conditions to minimize energy consumptions. The results of an avoided environmental impact analysis show that the system contribute to reduce environmental impacts in comparison with activated carbon production from coconut shell.