• Title/Summary/Keyword: 정형 빅데이터

Search Result 251, Processing Time 0.023 seconds

Study on the Application Methods of Big Data at a Corporation -Cases of A and Y corporation Big Data System Projects- (기업의 빅데이터 적용방안 연구 -A사, Y사 빅데이터 시스템 적용 사례-)

  • Lee, Jae Sung;Hong, Sung Chan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • In recent years, the rapid diffusion of smart devices and growth of internet usage and social media has led to a constant production of huge amount of valuable data set that includes personal information, buying patterns, location information and other things. IT and Production Infrastructure has also started to produce its own data with the vitalization of M2M (Machine-to-Machine) and IoT (Internet of Things). This analysis study researches the applicable effects of Structured and Unstructured Big Data in various business circumstances, and purposes to find out the value creation method for a corporation through the Structured and Unstructured Big Data case studies. The result demonstrates that corporations looking for the optimized big data utilization plan could maximize their creative values by utilizing Unstructured and Structured Big Data generated interior and exterior of corporations.

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing (빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계)

  • Lee, Myeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.45-51
    • /
    • 2021
  • In accordance with the rapid non-face-to-face environment and mobile first strategy, the explosive increase and creation of many structured/unstructured data every year demands new decision making and services using big data in all fields. However, there have been few reference cases of using the Hadoop Ecosystem, which uses the rapidly increasing big data every year to collect and load big data into a standard platform that can be applied in a practical environment, and then store and process well-established big data in a relational database. Therefore, in this study, after collecting unstructured data searched by keywords from social network services based on Hadoop 2.0 through three virtual machine servers in the Spring Framework environment, the collected unstructured data is loaded into Hadoop Distributed File System and HBase based on the loaded unstructured data, it was designed and implemented to store standardized big data in a relational database using a morpheme analyzer. In the future, research on clustering and classification and analysis using machine learning using Hive or Mahout for deep data analysis should be continued.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Analysis of Trend for BigData Processing Technology by DW Appliance (DW 어플라이언스를 통한 빅데이터 처리 기술 동향 분석)

  • Choi, Ro-Hwan;Park, Seok-Cheon;Sim, Bong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.904-907
    • /
    • 2013
  • 최근 정보통신기술이 하루가 다르게 발전함에 따라 하루에도 수많은 데이터가 흘러나오는 최근의 추세이다. 정형 데이터 뿐 아니라 비정형 데이터 분석까지 진행하는 최근의 추세에 맞춰 현 빅데이터 기술 동향을 분석한다. 빅데이터 시대를 맞아 기존의 데이터웨어하우스(DW)와 발전된 데이터웨어하우스(DW) 어플라이언스에 대해 분석하고 향후 발전 전망과 방향을 제시한다.

Implementation and Comparison of Atypical Big-Data Collecting Modules (비정형 빅데이터 수집 모듈의 구현 및 비교)

  • Kim, JungKi;Cheon, YoSeop;Kim, WooSaeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.631-634
    • /
    • 2014
  • 최근 스마트폰의 보급으로 블로그, SNS 등에서 방대한 양의 데이터가 발생함에 따라 이를 수집하고 분석하는 작업의 중요성이 커지고 있다. 이러한 데이터는 크게 정형 데이터와 비정형 데이터로 나눌 수 있는데, 특히 비정형 데이터는 전체 데이터의 약 80%를 차지할 정도로 그 양과 가치가 매우 크다. 이 논문에서는 빅데이터 환경에서 발생하는 이러한 비정형 데이터를 수집하는 모듈 중 가장 널리 알려진 Chukwa와 Flume에 대한 개발 및 비교 분석을 시도 하였다.

Current Status of Big Data Utilization (빅데이터의 국내.외 활용 고찰 및 시사점)

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.229-233
    • /
    • 2013
  • The technologies related with information communication regions are progressing continuously. These technologies in today are converged with different industries in rapidly. Because of these properties, A number of data are made in our life. Through many devices such as smart phone, camera, game machine, tablet pc, various data types are produced and the traffic is increased. We called it Big Data. There are many efforts to create new worth creation through Big Data utilization. Therefore, we described current trends and future of Big Data in this paper.

A Pattern Study on Keyword of the Collagen through Utilizing Big Data Analysis (빅데이터 분석을 활용한 콜라겐 키워드에 대한 패턴)

  • Yu, Ok-Kyeong;Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.124-125
    • /
    • 2016
  • 빅데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기울이고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 콜라겐 키워드에 대한 의미를 분석하고자 한다. 또한 분석결과를 바탕으로 실무적 시사점을 제시하고자 한다.

  • PDF

Suggestion of BigData Processing System for Enhanced Data Processing on ETL (ETL 상에서 처리속도 향상을 위한 빅데이터 처리 시스템 제안)

  • Lee, Jung-Been;Park, Seok-Cheon;Kil, Gi-Beom;Chun, Seung-Tea
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.170-171
    • /
    • 2015
  • 최근 디지털 정보량의 기하급수적인 증가에 따라 대규모 데이터인 빅데이터가 등장하였다. 빅데이터는 데이터가 실시간으로 매우 빠르게 생성되며 다양한 형태의 데이터를 가지며 이 데이터를 수집, 처리, 분석을 통해 새로운 지식을 창출한다. 그러나 기존의 ETL(Exact/Transform/Load) 연구에서 이러한 빅데이터를 처리 하는데 성능 저하가 발생되고 있으며 비정형 데이터를 관리할 수 없다. 따라서 본 논문에서는 기존의 ETL 처리의 한계를 극복하기 위해서 하둡을 이용하여 ETL 상에서 처리 속도를 높이고 비정형 데이터를 처리할 수 있는 빅데이터 처리 시스템을 제안하고자 한다.

A Study on Concept and Services Framework of Geo-Spatial Big Data (공간 빅데이터의 개념 및 서비스 프레임워크 구상에 관한 연구)

  • Yu, Seon Cheol;Choi, Won Wook;Shin, Dong Bin;Ahn, Jong Wook
    • Spatial Information Research
    • /
    • v.22 no.6
    • /
    • pp.13-21
    • /
    • 2014
  • This study defines concept and service framework of Geo-Spatial Big Data(GSBD). The major concept of the GSBD is formulated based on the 7V characteristics: the general characteristics of big data with 3V(Volume, Variety, Velocity); Geo-spatial oriented characteristics with 4V(Veracity, Visualization, Versatile, Value). GSBD is the technology to extract meaningful information from Geo-spatial fusion data and support decision making responding with rapidly changing activities by analysing with almost realtime solutions while efficiently collecting, storing and managing structured, semi-structured or unstructured big data. The application area of the GSBD is segmented in terms of technical aspect(store, manage, analyze and service) and public/private area. The service framework for the GSBD composed of modules to manage, contain and monitor GSBD services is suggested. Such additional studies as building specific application service models and formulating service delivery strategies for the GSBD are required based on the services framework.