• Title/Summary/Keyword: 정형 데이터

Search Result 729, Processing Time 0.027 seconds

Analysis of drama viewership related words through unstructured data collection (비정형데이터 수집을 통한 드라마 시청률 연관어 분석)

  • Kang, Sun-Kyoung;Lee, Hyun-Chang;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1567-1574
    • /
    • 2017
  • In this paper, we analyzed the stereotyped and non - stereotyped data in order to analyze the drama 's ratings. The formalized data collection collected 19 items from the four areas of drama information, person information, broadcasting information, and audience rating information of each broadcasting company. Atypical data were collected from bulletin boards, pre - broadcast blogs and post - broadcast blogs operated by each broadcasting company using a crawling technique. As a result of comparing the differences according to the four areas for each broadcaster from the collected regular data, the results were similar to each other. And we derived seven related words by analyzing the correlation of occurrence frequencies from unstructured data collected from bulletin boards and blogs of each broadcasting company. The derived associations were obtained through reliability analysis.

Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain (장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구)

  • Ju, Yeonjin;Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.127-135
    • /
    • 2020
  • As the importance of the use and analysis of big data is emerging, there is a growing interest in natural language processing techniques for unstructured data such as news articles and comments. Particularly, as the collection of big data becomes possible, data mining techniques capable of pre-processing and analyzing data are emerging. In this case study with a telecom company, we propose a methodology how to formalize unstructured data using text mining. The domain is determined as equipment failure and the data is about 2.2 million equipment check ledger data. Data on equipment failures by 800,000 per year is accumulated in the equipment check ledger. The equipment check ledger coexist with both formal and unstructured data. Although formal data can be easily used for analysis, unstructured data is difficult to be used immediately for analysis. However, in unstructured data, there is a high possibility that important information. Because it can be contained that is not written in a formal. Therefore, in this study, we study to develop digital transformation method for unstructured data in equipment check ledger.

A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN (불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법)

  • Jung-Dam Noh;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.97-118
    • /
    • 2022
  • As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.

A Study on the Utilization of Flood Damage Map with Crowdsourcing Data (크라우드 소싱 데이터를 적용한 홍수 피해지도 활용방안 연구)

  • Lee, Jeongha;Hwang, SeokHwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.310-310
    • /
    • 2022
  • 최근 통신의 발달로 인하여 웹(Web)상에는 다양한 데이터들이 실시간으로 생산되고 있으며 해당 내용은 다양한 산업에서 활용되고 있다. 특히 최근에는 재난과 관련 상황에서도 소셜 네트워크 서비스(SNS) 데이터가 활용되기도 하며 기존의 수치 계측 데이터가 아닌 하나의 센서 역할을 하는 개인의 비정형데이터의 업로드가 다양한 재난 모니터링 부분에 활용되고 있는 실정이다. 특히 홍수 등의 자연재해 발생 시 개개인의 업로드 한 웹 데이터에는 시간에 따른 인구의 유동성이나 간단한 위치 정보 등을 포함하여 실제 피해의 정도를 보다 빠르고 다양한 정보로 모니터링이 가능하다. 홍수 발생 시 일반적으로 활용하는 수문 데이터는 피해의 규모가 크게 예측되는 대하천 위주로 관측이 이루어지며 관측지역과 데이터의 양이 한정되어있어 비정형데이터를 함께 활용한 연구가 필요하다. 따라서 본 연구에서는 웹에 있는 비정형 데이터들을 추출해내는 웹 크롤러를 구성하고 해당 프로그램을 활용하여 추출한 데이터들에 대해 강우 사상과 공간적 패턴을 비교 분석하여 크라우드 소싱 데이터를 적용한 홍수 피해지도의 활용방안을 제시하고자 한다.

  • PDF

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

Analysis of related words of drama viewership through SNS unstructured data crawling (SNS 비정형데이터 크롤링을 통한 드라마 시청률의 연관어 분석)

  • Kang, Sun-Kyoung;Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.169-170
    • /
    • 2017
  • In this paper, we analyze contents of formal and non - standardized data to understand what factors affect the ratings of drama. The formalized data collection collected 19 items from the four areas of drama information, person information, broadcasting information, and audience rating information of each broadcasting company. In order to collect unstructured data, crawling techniques were used to collect bulletin boards, pre - broadcast blogs and post - broadcast blogs for each drama. From the collected data, it was found that the differences according to broadcasting time, the start time, genre, and day of broadcasting were similar among broadcasting companies.

  • PDF

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing (빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계)

  • Lee, Myeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.45-51
    • /
    • 2021
  • In accordance with the rapid non-face-to-face environment and mobile first strategy, the explosive increase and creation of many structured/unstructured data every year demands new decision making and services using big data in all fields. However, there have been few reference cases of using the Hadoop Ecosystem, which uses the rapidly increasing big data every year to collect and load big data into a standard platform that can be applied in a practical environment, and then store and process well-established big data in a relational database. Therefore, in this study, after collecting unstructured data searched by keywords from social network services based on Hadoop 2.0 through three virtual machine servers in the Spring Framework environment, the collected unstructured data is loaded into Hadoop Distributed File System and HBase based on the loaded unstructured data, it was designed and implemented to store standardized big data in a relational database using a morpheme analyzer. In the future, research on clustering and classification and analysis using machine learning using Hive or Mahout for deep data analysis should be continued.

A Normalization Matrics for Computational Processing of Crime Dataset (범죄 데이터의 전산처리를 위한 정규화 메트릭 설정 방안)

  • Ihm, Sun-Young;Park, Eun-Young;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.932-933
    • /
    • 2015
  • 최근 데이터의 양이 급격하게 증가하면서 빅데이터의 시대가 도래했다. 빅데이터는 형식이 없는 비정형 데이터이므로 기존의 정형 데이터 처리 방법으로는 분석 및 데이터 처리가 불가능해졌다. 또한, 범죄예방에 대한 관심이 증가하면서, 범죄 데이터 분석의 수요가 증가하고 있다. 본 연구에서는 비정형 범죄 데이터를 분석, 예측 등의 전산처리를 하기 위한 정규화 메트릭을 설정하는 방안을 제안하고자 한다.

Mathematical Algorithms for the Automatic Generation of Production Data of Free-Form Concrete Panels (비정형 콘크리트 패널의 생산데이터 자동생성을 위한 수학적 알고리즘)

  • Kim, Doyeong;Kim, Sunkuk;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • Thanks to the latest developments in digital architectural technologies, free-form designs that maximize the creativity of architects have rapidly increased. However, there are a lot of difficulties in forming various free-form curved surfaces. In panelizing to produce free forms, the methods of mesh, developable surface, tessellation and subdivision are applied. The process of applying such panelizing methods when producing free-form panels is complex, time-consuming and requires a vast amount of manpower when extracting production data. Therefore, algorithms are needed to quickly and systematically extract production data that are needed for panel production after a free-form building is designed. In this respect, the purpose of this study is to propose mathematical algorithms for the automatic generation of production data of free-form panels in consideration of the building model, performance of production equipment and pattern information. To accomplish this, mathematical algorithms were suggested upon panelizing, and production data for a CNC machine were extracted by mapping as free-form curved surfaces. The study's findings may contribute to improved productivity and reduced cost by realizing the automatic generation of data for production of free-form concrete panels.