• Title/Summary/Keyword: 정탄성계수

Search Result 29, Processing Time 0.022 seconds

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.

Analysis of Dynamic and Static Elastic Modulus of In-situ Marine Concrete (현장 해양 콘크리트의 동탄성계수와 정탄성계수 분석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.437-443
    • /
    • 2009
  • Impact echo method estimating the soundness of concrete measures the dynamic elastic modulus of specimens which are different with static elastic modulus tested by uni-axial compression test. Thus, this paper investigates the relationships between dynamic and static elastic modulus based on in-situ concrete cores. Also, dynamic elastic modulus was compared with compressive strength. Concrete cores were obtained from about 20 to 70 years concrete structures at three different harbors which were Incheon, Wando, and Masan in Korea. In order to investigate the influence of exposure condition on the relationship, air zone, splash zone, and tidal zone were selected. Different harbors showed the different relationships between dynamic and static elastic modulus, but exposure conditions have no influence on the relationship between dynamic and static elastic modulus. Also, the relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The relationship equations were proposed to estimate the relationships properly.

Relationship between the P Wave Velocity, Static Elastic Modulus, and Dynamic Elastic Modulus of Rocks (암종별 P파 속도, 정탄성계수 및 동탄성계수의 상관관계 분석 연구)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.339-349
    • /
    • 2019
  • The relationship between the P wave velocity, static elastic modulus, and dynamic elastic modulus of different rock types was investigated to identify the distributive characteristics of the dynamic elastic modulus. Laboratory and in situ test results from 1,646 rock specimens, which are obtained for design and construction of structure, were analyzed, and grouped into three key rock types: gneiss, granite, and sandstone. These relationships were verified by comparing them with the results from previous studies. The gneiss samples exhibit a linear P wave velocity-static elastic modulus relationship, whereas the granite and sandstone samples exhibit exponential relationships. Their coefficient of determination ($R^2$) values are all in the 0.491-0.642 range, and are similar to those obtained in previous studies. The relationship between the static and dynamic elastic modulus exhibits a linear relationship for all rock types, yielding a coefficient of determination in the 0.543-0.676 range. The relationship between the P wave velocity and static elastic modulus follows an exponential regression for all rock types, with a high coefficient of determination that is in the 0.875-0.940 range.

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

Comparison of Rock Young's Moduli Determined from Various Measurement Methods (다양한 시험법으로 규명된 암반 탄성계수 비교)

  • Ryu Kuen-Hwan;Chang Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-14
    • /
    • 2006
  • Various measurements were carried out to estimate the modulus of deformation in two dominant rock types in Korea: granite and gneiss. Four most commonly used methods were utilized: Goodman jack tests, PS well logging, laboratory ultrasonic tests and laboratory uniaxial loading tests. Laboratory static and dynamic Young's moduli depend on the magnitude of the applied axial stress, range of Sequency used for measurement and the loading/unloading condition. As the laboratory measurement condition approaches to that in situ, the resultant moduli also appear to be comparable to that in situ. This suggests that the simulation of in situ stress condition is important when the modulus of rock is determined in the laboratory Dynamic Young's modulus is generally higher than static Young's modulus because of (micro)crack behavior in response to the stress, different range of frequency used for measurements, and the effect of the amplitude of deformation. Understanding of the relations in moduli from different measurement methods will help estimate appropriate in situ values.

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF

Mechanical Properties and Resistance to Freezing and Thawing of Concrete Using Air-Cooled Ferronickel Slag Fine Aggregate (서냉 페로니켈 슬래그 잔골재를 이용한 콘크리트의 역학적 특성 및 동결 융해 저항성)

  • Lee, Hong-Gik;Bae, Su-Ho;Lee, Hyun-Jin;Choi, Yun-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.319-323
    • /
    • 2018
  • Ferronickel slag is a by-product from the ferronickel smelting process and it is divided into air-cooled ferronickel slag and water granulated ferronickel slag according to cooling system. The purpose of this experimental resesrch is to investigate the mechanical properties and resistance to freezing and thawing of concrete using air-cooled ferronickel slag(ACFNS) fine aggregate. For this purpose, the concrete specimens with water-cement ratio of 50% were made with ACFNS's replacement ratios of 0%, 20%, 30%, 40%, 50%, 70%, and 100% by volume of fine aggregate. It was observed from the test results that the compressive strength and static modulus of elasticity of ACFNS fine aggregate concrete were increased with increasing replacement ratio of ACFNS and the resistance to freezing and thawing of this was similar to reference concrete which had the relative dynamic modulus of elasticity of more than 90% during the freezing and thawing of 300 cycles.

Engineering Properties of Permeable Polymer Concrete with CaCO3 and Stone Dust (CaCO3와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan Yong;Song, Young Jin;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with fillers and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 148% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.17{\times}10^5{\sim}1.32{\times}10^5kg/cm^2$, which was approximately 53~56% of that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The dynamic modulus of elasticity was in the range of $1.3{\times}10^5{\sim}1.5{\times}10^5kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 10~13% than that of the static modulus. 4. The water permeability was in the range of $3.076{\sim}4.390{\ell}/cm^2/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and elastic modulus were largely showed with the decrease of water permeability.

  • PDF

The Stress-Strain Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 응력(應力)-변형특성(變形特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong;Kim, Kyung Tae
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.120-130
    • /
    • 1996
  • Concrete is the most commonly used structural materials, but in concrete construction, its self-weight represents a very large proportion of the total load on the structure, and there are clearly considerable advantages in reducing the density of concrete. This study was carried out to investigate the stress-strain properties of no-fines synthetic lightweight concrete with synthetic lightweight coarse aggregates. The used synthetic lightweight coarse aggregate were two types, one was expanded clay with grading 3~8mm, the other is pumice stone with grading 4.75~10mm. The results of this study were summarized as follows ; The static modulus of elasticity of the synthetic lightweight concrete was $1.8{\times}10^5kg/cm^2$ at type CE using the expanded clay and $1.6{\times}10^5kg/cm^2$ at type CL using the pumice stone. The dynamic modulus of elasticity was $1.9{\times}10^5kg/cm^2$(CE) and $2.0{\times}10^5kg/cm^2$(CL). The dynamic modulus of elasticity was 10~30% larger than that of the static modulus of elasticity. The load-time curves of synthetic lightweight concrete were shown approximately similar to each other type except for added foaming agent. The stress-strain curves in uniaxial compressive of synthetic lightweight concrete were similar to each other.

  • PDF