• 제목, 요약, 키워드: 정점 집합 데이터

검색결과 17건 처리시간 0.048초

유전자 알고리즘에 의한 최적 Interval Type-2 퍼지 논리 시스템 (Optimized Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms)

  • 김대복;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • /
    • pp.1851-1852
    • /
    • 2008
  • Type-2 퍼지 논리 집합은 언어적인 불확실성을 다루기 위하여 고안된 Type-1 퍼지 논리 집합의 확장한 것이다. Type-2 퍼지 논리 시스템은 외부 노이즈를 효율적으로 다룰 수 있다. 본 논문에서는 불확실성을 표현하기 위해서 전.후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부 멤버쉽 함수의 정점을 결정하는데 유전자 알고리즘(Genetic Algorithms)으로 멤버쉽 함수의 정점을 결정한다. 제안된 모델은 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 테스트 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치적인 예를 보인다.

  • PDF

레벨-2 퍼지 그래프 (Level-2 Fuzzy Graph)

  • 이승수;이광형
    • 한국지능시스템학회:학술대회논문집
    • /
    • /
    • pp.52-55
    • /
    • 2001
  • 퍼지 그래프는 그래프에 대한 정점들과 간선들의 소속정도를 표현할 수 있도록 일반 그래프를 확장한 그래프이다. 그러나 기준 퍼지 그래프는 명확한 정점들의 집합 위에서의 관계만을 표시할 수 있다. 본 논문에서는 퍼지 집합간의 관계를 표시할 수 있도록 확장된 레벨-2 퍼지 그래프를 제안한다. 본 논문에서는 레벨-2 퍼지 그래프를 정의하고 레벨-2 퍼지 그래프에서 수정되어야 하는 연산들과 레벨-2 퍼지 그래프의 특성에 대하여 소개한다. 제안된 레벨-2 퍼지 그래프는 퍼지 데이터 비교 및 퍼지 클러스터링 분야에 적용될 수 있다.

  • PDF

C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계 (Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering)

  • 백진열;오성권;김현기
    • 한국지능시스템학회:학술대회논문집
    • /
    • /
    • pp.325-328
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.

  • PDF

빈발 패턴 네트워크에서 연관 규칙 발견을 위한 아이템 클러스터링

  • 오경진;정진국;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • /
    • pp.321-328
    • /
    • 2007
  • 데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.

  • PDF

데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정 (Optimal Identification of Data Granules-based Fuzzy Set Fuzzy Model)

  • 박건준;김완수;오성권;김현기
    • 한국지능시스템학회:학술대회논문집
    • /
    • /
    • pp.317-320
    • /
    • 2005
  • 본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.

  • PDF

Type-2 퍼지 논리 시스템의 시계열 예측 공정으로 응용 (Application of Type-2 Fuzzy Logic System to Forecasting Time-Series Process)

  • 백진열;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • /
    • pp.95-96
    • /
    • 2008
  • 본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.

  • PDF

C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계 (Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering)

  • 백진열;이영일;오성권
    • 한국지능시스템학회논문지
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 제안된 모델은 규칙의 전 후반부가 Type-2 퍼지 집합으로 주어진 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 해석한다 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 무반부 퍼지 집합의 정점 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 제안된 모델에 관련된 파라미터는 입자 군집 최적화(Particle Swarm Optimization; PSO) 알고리즘으로 동조한다. 제안된 모델은 모의 데이터집합(Synthetic dadaset), Mackey-Glass 시계열 공정 데이터를 적용하여 논증되고, 기존 Type-1 퍼지 논리 시스템과의 근사화 및 일반화 능력에 대하여 비교 토의한다.

항만 공사에도 TIN시대 개막 (A New Technology of TIN for Port and Harbor)

  • 김동휘
    • 한국해안해양공학회:학술대회논문집
    • /
    • /
    • pp.31-31
    • /
    • 1995
  • TIN은 Triangulated Irregular Network의 약자로 불규칙한 대소삼각형의 집합으로 삼각망을 구성, 지표면을 Digital Terrain Model로 만드는 기법이다. 지표면(해저지형포함)은 수치화된 등고선의 벡터 데이터와 점의 표고데이터 또는 표고 평행배열의 Raster데이터로부터 모형화되며 또는 제 3의 방법인 TIN에 의해 모형화된다. 이 TIN에 의한 도형은 컴퓨터가 위성측량, 항공측량, 광파측량 또는 음차수심측량등 측량결과를 받아 어떤 특정 프로그램을 구동 삼각형의 정점에 해당하는 점의 X, Y, Z의 좌표로부터 닫한 삼각형을 작성한다. (중략)

  • PDF

구조적 차이를 고려한 서브 그래프 매칭을 위한 요약 색인 기법 (Summary Indexing Scheme for Subgraph Matching Considering Structural Differences)

  • 최도진;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • /
    • pp.447-448
    • /
    • 2019
  • 생명 공학 분야에서는 노이즈가 많고 불완전한 데이터 집합의 사용이 많이 이루어진다. 불완전한 그래프에서 구조적 차이를 고려한 근사 서브 그래프 매칭에 대한 활용이 이루어지고 있다. 본 논문에서는 기존 기법에서 모든 데이터 및 경우의 수를 색인하는 과도한 색인 문제와 계산 비용 감소를 위한 요약 색인 기법을 제안한다. 구조적 차이 정보를 저장하기 위해서 특정 정점간의 최단 거리 값을 관리하고, 색인 부하 감소 및 일관성을 위해 요약 색인에 대한 간결화 작업을 수행한다.

  • PDF

최대 가중치 독립집합 문제의 최대 가중치 독립정점 쌍 병합 알고리즘 (Merge Algorithm of Maximum weighted Independent Vertex Pair at Maximal Weighted Independent Set Problem)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2020
  • 본 논문은 NP-난제로 널리 알려진 최대 가중치 독립집합(MWIS) 문제에 대해 다항시간으로 풀 수 있는 알고리즘을 제시하였다. MWIS 문제에 대해 지금까지는 특정 그래프 형태에 특화된 다항시간 알고리즘, 또는 분산형, 클러스터 형성 방법들이 제안되기도 하였으나 모든 그래프 형태에 적합한 단일화된 알고리즘이 제안되지 않고 있다. 따라서 본 논문에서는 어떠한 형태의 그래프에도 적합한 유일한 다항시간 알고리즘을 제안한다. 제안된 알고리즘은 최대 가중치를 갖는 정점 vi를 vi와 이웃하지 않은 정점 들 중 최대 가중치를 갖는 vj 정점과 병합하였다. 제안된 알고리즘을 무방향 그래프와 트리에 적용한 결과, 최적 해를 얻었다. 특히, 일부 데이터에 대해서는 기존에 알려진 해를 개선하는 결과도 얻었다.