• Title/Summary/Keyword: 정적 물성

Search Result 87, Processing Time 0.024 seconds

Synthesis of Saccharide Nonionic Biosurfactants from Coconut Oil and Characterization of Their Interfacial Properties (코코넛 오일로부터 유래된 당계 비이온 계면활성제 합성 및 계면 특성 연구)

  • Jo, SeonHui;Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.435-444
    • /
    • 2019
  • In this study, two types of nonionic saccharide biosurfactants, GP-6 and GP-7, were prepared from coconut oil and the structure of resulting products was investigated by FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometer. The interfacial properties of GP-6 and GP-7 were found to be excellent from interfacial property measurements such as critical micelle concentration, static and dynamic surface tensions, interfacial tension, emulsification power, wetting property and foam stability. Detergency test evaluated by using a Terg-o-tometer showed moderately good detergency compared to that of conventional surfactants used in detergent formulations. Biodegradability, acute oral toxicity, acute dermal irritation and acute eye irritation tests revealed that both surfactants possess excellent mildness and superior environmental compatibility indicating the potential applicability to detergent products formulations. In particular, GP-6 can be considered as a strong candidate in detergent formulations since it is more surface active, mild and readily biodegradable than GP-7.

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis (터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.71-85
    • /
    • 2010
  • Dynamic analyses of tunnels are widely performed in practice in Korea. Accurate performance of a dynamic analysis is very difficult, requiring appropriate application of lower and lateral boundary conditions, deconvolution, constitutive model, and selection of dynamic soil properties etc. Lack of a systematic guideline on how to perform the dynamic analysis makes it even more difficult to perform an analysis. In addition, dynamic analyses are not needed in most cases and pseudo-static analyses are more than adequate. However, they are performed without a clear understanding on the need for the dynamic analysis and differences between the two methods. In this study, firstly, a guideline for correctly performing a 2D dynamic analysis is developed. Secondly, the differences in the tunnel responses using dynamic and pseudo-static analyses are discussed and compared. The results show that the discrepancies between the dynamic and static analyses are not significant for most cases. It is therefore recommended that the dynamic analyses be performed at tunnel portal, very soft ground, or in cases where spatial variation of the ground motion needs to be considered in the seismic analysis of tunnels in transverse direction.

Interfacial Properties of Propylene Oxide Adducted Sodium Laureth Sulfate Anionic Surfactant (프로필렌 옥사이드를 부가한 소듐 라우레스 설페이트 음이온 계면활성제의 계면 특성에 관한 연구)

  • Jeong Min Lee;Ki Ho Park;Hee Dong Shin;Woo Jin Jeong;Jong Choo Lim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.264-271
    • /
    • 2023
  • In this study, ASCO SLES-430 surfactant was synthesized by adducting 3 moles of ethylene oxide and 1 mole of propylene oxide to lauryl alcohol followed by a sulfation process, and the structure of the synthesized ASCO SLES-430 was elucidated by performing FT-IR, 1H-NMR and 13C-NMR analyses. Interfacial properties such as critical micelle concentration, static surface tension, emulsification index, and contact angle were measured, and environmental compatibility indices such as oral toxicity and skin irritation were also estimated for ASCO SLES-430. Both results were compared with ASCO SLES-226 and ASCO SLES-328 SLES surfactants possessing 2 moles and 3 moles of ethylene oxide, respectively. In particular, both foaming ability and foam stability were evaluated for ASCO SLES-430 and compared with ASCO SLES-226 and ASCO SLES-328, which have been widely used in detergent products, in order to test the potential applicability of ASCO SLES-430 in detergent product formulation for a small capacity built-in washing machine.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.