• Title/Summary/Keyword: 정적재하

Search Result 456, Processing Time 0.031 seconds

Flexural Behavior of RC Arch Deck Subjected to Static Loading (철근콘크리트 아치 데크의 정적 휨 거동)

  • Eom, Gi-Ha;Yang, Dal-Hun;Kim, Sung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, the flexural behavior of the RC Arch Deck under static loading was evaluated. Flexural test was carried out using an actual size RC Arch Deck with a length of 2.5 m, a center thickness of 100 mm and an end thickness of 160 mm. The test results showed that it's ultimate load was 1.74 times higher than the ultimate design load. On the other hand, it showed that the flexural behavior has different behaviors (i.e. different stiffness). This type of structural behavior indicates that it has inter-dependency between the deck and the supporting girder. Therefore, it is necessary to confirm the precise behavior by the static loading test of the RC Arch Deck, excluding the girder effect in the future study. The overall results showed that RC Arch Deck has excellent structural performance due to the structural advantages of the arch shape. In the future, the RC Arch Deck can be applied as a long span slab.

The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass (고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Kim, Young-A;Woo, Kyeongsik
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.349-354
    • /
    • 2013
  • In this paper, we conducted high velocity impact test for Carbon/Epoxy composite laminates and proposed advanced method for predicting the absorbed energy of composite laminates. During high-velocity impact test, we discovered loss of projectile mass macroscopically using high speed camera, thus we calculated the absorbed energy of composite laminates by taking loss of projectile mass into account. We proposed a model for predicting the absorbed energy of composite laminates subjected to high-velocity impact, the absorbed energy was classified into static energy and dynamic energy. The static energy was calculated by the quasi-static perforation equation that is related to the fiber breakage and static elastic energy. The dynamic energy can be divided by the kinetic energy of deformed specimen and fragment mass. Finally, the predicted absorbed energy considering loss of projectile mass was compared with experimental results.

Constructing A Visualization & Reusable Metrics based on Static/Dynamic Analysis (정적/동적 분석 기반의 재사용 메트릭과 가시화 구축)

  • Byun, Eun-Young;Son, Hyun-Seoung;Moon, So-Young;Jang, Woo-Sung;Park, Bo-Kyung;Kim, R. Youngchul
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.621-624
    • /
    • 2017
  • 소프트웨어의 적용 분야가 다양화되면서 시장 환경의 변화와 사용자 요구사항의 다양화가 급속도로 진행되고 있다. 하지만 부족한 시간, 예산, 인력 문제로 고품질의 소프트웨어 개발은 더 어려워졌다. 이런 문제의 해결을 위해 레거시 시스템의 모듈을 재사용하여 고품질화하고자 한다. 기존에는 정적 분석 기반의 재사용 모듈/덩어리 식별만 이루어졌지만, 실제 실행 환경에서 적용되는 동적 분석 기반의 재사용 식별이 더욱 중요하다. 이를 위해, 재사용 메트릭을 정의하고 재사용 모듈/덩어리 자동식별 및 가시화를 제안한다. 이는 새로운 프로젝트 개발의 재사용성을 높여, 신뢰성과 생산성 향상시키고 품질 개선에 기여한다.

Static Test of a Composite Wing with Damage Tolerance Design (손상 허용 설계를 적용한 복합재 날개의 정하중 시험)

  • Park, Min-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.471-478
    • /
    • 2018
  • Static tests of the composite wing structure were performed to verify damage tolerance design. Both 5 cases of DLLT and 3 cases of DULT were completed to meet requirements for static strength. After inducing BVID and open hole damages on the critical areas of the composite wing based on associated regulations, the DULT and fracture test were performed. In major wing parts, the measured strains and displacements agreed well with those of structural analysis. The initial structural fracture occurred at the area having minimum margin of safety as expected by analysis. As a result, it was confirmed that results from analytic model and strength evaluation were similar to behaviors of the composite wing structure.

A Numerical Study on Static Strength of Ring-Stiffened Tubular K-joint (환보강 K형 관이음부의 정적강도에 대한 수치적 연구)

  • Lim, Dong-Joo;Cho, Hyun-Man;Ryu, Yeon-Seon;Kim, Jeong-Tae;Na, Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.454-457
    • /
    • 2009
  • 관이음부는 다양한 장점을 가지고 있어 여러 분야에 널리 이용되며, 관이음부의 구조강도를 증가시키기 위해 내부에 환보강재를 설치하는 방법이 대형 강관구조물에서 사용되고 있다. 그러나 환보강 관이음부의 해석 및 설계 자료에 관한 연구는 미흡한 실정이므로, 보강재의 기하학적 특성과 정적강도와의 관계를 규명하고자 한다. 환보강 K형 관이음부의 정적강도에 대하여 수치적으로 검토하기 위해 원형 중공단면의 관이음부를 유한요소 모델링하였고, 각 부재의 직경, 두께 및 폭의 상관관계를 이용한 무차원 계수를 통해 보강재의 위치와 기하학적 형상에 따른 보강효과를 수치적으로 검토하였다.

  • PDF

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Static Behavior of Bi Prestressed Concrete Girders (프리스트레스트 콘크리트거더의 정적거동 평가)

  • Lee, Pil-Goo;Kim, Choong-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.357-360
    • /
    • 2008
  • This study was performed to estimate the workability and the static behavior for Bi Prestressed Concrete Girder(Bicon girder) which could introduce effectively prestressed forces into concrete girders. A bicon girder is manufactured by means of introducing pure bending moment that prestress simultaneously the compressive member(steel bar) and the tensile member(steel tendon). Static test was executed for 20m railway bridge girder specimen and evaluated whether pure bending moment was introduced or not, and the behaviors after cracking, and at the ultimate load. Test results showed that a bicon girder had the enough safety in the introduction of pure moment, the serviceability, and the ultimate behavior.

  • PDF

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Structural Re-design of Seawater Pump Impeller Shaft (해수펌프 임펠러 샤프트의 구조 재설계)

  • Cho, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.326-332
    • /
    • 2010
  • Critical response of seawater pump impeller shaft structure to various exciting loads is a fundamental factor in re-designing of the structure after its functional failure. In this paper, a typical case of the shaft structure's failure is investigated for re-designing purposes. Failure causes of interest are excessive bending moment, fatigue loads and dynamic resonance due to relevant motor rotation and unbalancing of the rotation loads. Static analyses of shaft structure under the conditions of concerned loads are carried out, followed by a dynamic investigation of the effects of resonance between the shaft and the motor on the structure. The relevant structural analyses are carried out using the Finite Element Methods combined with ANSYS code. Based on these, the primary cause for the shaft's structural failure is obtained. It is found that the change of the bending stiffness of the shaft is the primary concern in the re-designing process. A guideline for the re-design process of the seawater pump shaft structure is established, and a re-design scheme of the structure is proposed.