• Title/Summary/Keyword: 정응력

Search Result 615, Processing Time 0.03 seconds

A Study on Fracture Characteristics of Woven Carbon Fiber Reinforced Composite Material (직물탄소 섬유강화 복합재료의 파괴특성에 관한 연구)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.497-505
    • /
    • 1992
  • 본 연구에서는 최근에 개발된 직물 탄소섬유강화 복합재료의 파괴인성치를 정 량적으로 결정하고 파괴거동을 조사하고자 한다. 본 연구의 목적은 이 재료에 선형 탄성파괴역학의 적용여부를 알아보고, R곡선을 이용하여 균열의 생성점 및 불안정 파 괴점의 파괴인성치를 정확히 구하며, 주사형 전자현미경을 통해 파단면 및 균열 성장 시점을 관찰하여 파괴거동을 조사하는데 있다.

A PHOTOELASTIC STUDY ON THE STRESS DISTRIBUTION OF THE UPPER ANTERIOR TEETH WHEN RETRACT WITH HIGH PULL J-HOOK HEADGEAR (상악전치의 후방견인시 J-hook headgear의 사용이 응력분포변화에 미치는 영향에 대한 광탄성학적 연구)

  • Lee, You-Jin;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.697-709
    • /
    • 1997
  • This study was designed to investigate the stress intensity and distribution produced by 1mm activation of retraction archwire with $0^{\circ},\;7^{\circ},\;14^{\circ}$ torque and application of high polk J-hook headgear during retraction of four maxillary incisors using the photoelastic stress analysis. The photoelastic model was made with a PL-3 type epoxy resin which was substituted by alveolar bone portion. Each retraction archwire was fabricated from .020' X .025' stainless steel wire which had vertical loops in 7mm height and hooks for high pull J-hook headgear between central and lateral incisors. The high pull J-hook headgear was applied 35 degree backward and upward to occlusal plane with 200gm pet each side The findings of this study were as follows: 1. In case of $0^{\circ}$ torque, the stress was distributed from cervical 1/8 to apex of roots of central and lateral incisors which were the forms of arc mode. When the high pull J-hook headgear was applied, the stress distributed by arc mode was presented from cervical 1/2 to apex of roots of central and lateral incisors. And the stress distributed by following the root surface was presented from alveolar crest to cervical 1/2 of roots of central and lateral incisors. The stress between apecies of central and Lateral incisors was presented also. 2. In case of $7^{\circ}$ torque, the stress distributed by arc mode was presented from cervical 1/2 to apex of roots of central and lateral incisors. And the stress distributed by following the root surface was presented from alveolar crest to cervical 1/2 of roots of central and lateral incisors. When the high pull J-hook headgear was applied, the stress distributed by following the root surface was presented mote apically than without headgear. The stress between apecies of central and lateral incisors was presented also. 3. In case of $14^{\circ}$ torque, the stress distributed by following the root surface was Presented from alveolar crest to apex of roots of central and lateral incisors. When the high pull J-hook headgear was applied, the stress distributed by following the root surface was presented stronger than without headgear The stress between apecies of central and lateral incisors was presented also.

  • PDF

Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment (지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석)

  • Yun, Mi-Jung;Kim, Chang-Weop;Jeong, Chan-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

Relief of Residual Stress and Estimation of Heat-Treatment Characteristics for Al6061 Alloy by Cryogenic Heat Treatment (극저온 열처리에 의한 Al6061 합금의 잔류응력 제거 및 열처리 특성 평가)

  • Ko, Dae-Hoon;Park, Ki-Jung;Cho, Young-Rae;Lim, Hak-Jin;Lee, Jung-Min;Kim, Min-Byung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1145-1153
    • /
    • 2011
  • The purpose of this study is to relieve the residual stress of Al6061 using cryogenic heat treatment. Experimental T6 and cryogenic heat treatments were carried out to define the convective heat-transfer coefficient, which was then applied in the finite-element method (FEM) to predict the residual stress. The predicted residual stress was compared with the residual stress measured by X-ray diffraction (XRD), and the results were in good agreement. The mechanical properties were estimated by measuring the electrical conductivity and hardness. In addition, the size and formation of the precipitations were observed by TEM and XRD analysis for both T6 and cryogenic heat treatments. The effects of the cryogenic heat treatment on the residual stress, mechanical properties, and precipitation of Al6061 alloys were thus confirmed.

A Study on the Behaviour of Single Piles and Pile Groups in Consolidating Ground from Coupled Consolidation Analyses (연계압밀해석을 통한 압밀이 진행 중인 지반에 근입된 단독말뚝 및 군말뚝의 거동연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.15-25
    • /
    • 2016
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of single piles and pile groups in consolidating ground from coupled consolidation analyses. Single piles, $4{\times}4$ and $6{\times}6$ piles inside groups with a spacing of 2.5D were considered, where D is the pile diameter. It has been found that dragload and downdrag on the piles developed rather quickly at the early stage of consolidation. However, when the degree of consolidation was more than 50~75%, only little increases of dragload and downdrag were induced on the pile. Negative Skin Friction (NSF) on the pile in the fill layer was mobilised quickly and remained constant throughout further consolidation. The development of NSF is influenced both by the relative shear displacements at the pile-soil interface and the vertical effective soil stresses during consolidation. The former governed the early stage of consolidation and the latter affected the later stage of consolidation. The vertical effective soil stresses adjacent to the piles were reduced due to the shear stress transfer at the pile-soil interface, in particular for piles inside the pile groups. The range of NSF influence zone concerning the reductions of the effective vertical soil stresses was about 20D measured from the piles in the horizontal direction. On the contrary, the effective horizontal soil stresses acting on the piles were similar to those at the far field.

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites (새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.73-87
    • /
    • 1996
  • The mechanical properties of 2D ceramic composites fabricated bythe newly developed powder infiltration and subsequent multiple impregnation process were characterised by both 3-point flexure and tensile tests. These tests were performed with strain gauge and acoustic emission instrument. The woven fabric composites used for the test have the basic combinations of $Al_{2}$$O_{3}$ fabric/$Al_{2}$$O_{3}$ and SiC fabric (Tyranno)/SiC. Uniaxially aligned SiC fibre(Textron SCS-6)/SiC composites were also tested for comparison, The ultimate flexural strength and first-matrix cracking stress of SiC fabric/SiC composite with 73% of theoretical density were about 300 MPa and 77 MPa respectively. However, the ultimate tensile strengths of composite were generally one third of flexural strengths, and first-matrix cracking stress in a tension test was also much lower than the value obtained from flexure test. The lower mechanical properties measured by tension test were analysed quantitatively bythe differences in stressed volume using Weibull statistics. This showed that the ultimate strength and the firs-tmatrix cracking stress of woven laminate composites were mainly determined bythe gauge length of fibres and the stressed volume of matrix respectively. Incorporation of SiC whiskers into the matrix increased first-matrix cracking stress by increasing the matrix failure strain of composites.

  • PDF

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

Anlysis and Design of Wale in Innovative Prestressed Support(IPS) System (혁신적 프리스트레스트 가시설(IPS)공법에 적용되는 띠장의 설계 및 해석)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Kim, Nak-Kyung;Ji, Tea-Sug
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.79-91
    • /
    • 2005
  • The behaviors and design procedures of wale in innovative prestressed support(IPS) system are presented in this paper. Using the theory of the beam on elastic foundation, the member forces of the wale under initial pretension are evaluated. Choosing cable tensions as redundant forces, member forces subjected to earth pressure are calculated by the statically indeterminate analysis. The computer analysis model under uniform and non-uniform earth pressure is constructed using beam element for the IPS wale, tension-only element for cable, and compression-only element for soil. Axial forces and bending moments of IPS wale under initial pretension and design earth pressure are calculated. The combined stresses due to these axial force and bending moment are estimated to satisfy the design formula.