• Title/Summary/Keyword: 정영미

Search Result 387, Processing Time 0.022 seconds

Preliminary Study on the Analysis of Term Associations in Korean Text (한국어 텍스트 내 용어연관성 분석을 위한 기초 연구)

  • 정영미;이재윤
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1998.08a
    • /
    • pp.243-246
    • /
    • 1998
  • 텍스트 자동분석을 통해 얻어진 통계적인 용어연관성은 정보검색 및 언어 처리와 관련된 여러 분야에서 폭넓게 이용되고 있다. 용어연관성을 구하기 위한 연관계수는 여러 가지가 있지만 적용분야에 관계없이 유사계수 공식이나 상호정보량 공식이 주류를 차지하고 있다. 이런 공식들은 그 통계적 특성이 서로 다르기 때문에 알맞은 적용분야를 파악할 필요가 있다. 이 연구에서는 필요 연관계수 공식의 특성을 이론적으로 파악하였고, 실험으로 검증하기 위하여 240만 어절 분량의 실험용 한국어 신문기사 데이터베이스를 구축하였다.

  • PDF

Categorization of Korean documents using Support Vector Machines (SVM을 이용한 한글문서 범주화 실험)

  • 최성환;임혜영;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.29-32
    • /
    • 2000
  • 자동문서 범주화에 이용되는 학습분류기 중에서 SVM은 자질 차원을 축소하지 않고도 좋은 성능을 보이고 있다. 본 실험에서는 KTSET 텍스트 컬렉션을 대상으로 두 개의 SVM 분류기를 이용하여 자질축소 및 자질표현에 따른 성능비교 실험을 하였다. 자질축소를 위하여 $\chi$$^2$통계량을 자질선정기준으로 사용하였으며, 자질값으로는 단어빈도 및 문헌빈도의 두 요소로 구성되는 다양한 가중치를 사용하였다. 실험결과 SVM은 자질축소에 큰 영향을 받지 않고 가중치 유형에 따라 성능의 차이를 보였다.

  • PDF

A Comparative Study on Category Assignment Methods of a KNN Classifier (KNN 분류기의 범주할당 방법 비교 실험)

  • 이영숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.37-40
    • /
    • 2000
  • KNN(K-Neatest Neighbors)을 사용한 문서의 자동분류에서는 새로운 입력문서에 범주를 할당하기 위해 K개의 유사문서로부터 범주별 문서의 분류빈도나 유사도를 이용한다. 본 연구에서는 KNN 기법에서 보편적으로 사용되는 범주 할당 방법을 응용하여 K개 유사문서 중 최상위 및 상위 M개 문서에 가중치를 부여하는 방법들을 고안하였고 K값의 변화에 따른 이들의 성능을 비교해 보았다.

  • PDF

Comparative Evaluation of Term Weighting Methods in Automatic Document Classification (문헌 자동분류에서 용어가중치 기법에 대한 연구)

  • 이재윤;최보영;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.41-44
    • /
    • 2000
  • 정보검색 시스템의 성능을 향상시키기 위해서 다양한 용어가중치 공식이 제안 되어왔다. 용어가중치는 질의와 문헌을 비교하는 검색의 경우뿐만 아니라 문헌과 문헌을 비교하는 자동분류에서도 성능에 영향을 미칠 수가 있다. 본 논문에서는 다양한 용어가중치 공식에 대해서 살펴보고, 문헌 자동분류 성능에 미치는 영향을 문헌 클러스터링 실험과 범주화 실험을 통해 확인해 보았다.

  • PDF

A Categorization Model Based On Information Structure of HTML Documents (구조 정보를 이용한 웹 문서 범주화 모형)

  • 조이영;최상희;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.147-152
    • /
    • 2000
  • 본 연구는 다양한 웹 문서를 효과적으로 범주화 할 수 있는 모형을 구축하는데 그 목적이 있다. 이를 위해 본 연구에서는 웹 문서가 가지고 있는 구조 정보인 링크(link)와 문서 단계(level)를 활용하여 문서 유형을 식별한 후, 각 유형별로 범주화 과정을 달리 적용하여 범주화 성능을 개선시키는 방법을 고안하였다.

  • PDF

Application of a Naive Bayes Classifier for Topic Word Sense Disambiguation (주제어의 중의성 해소를 위한 Naive Bayes 분류기 적용에 관한 연구)

  • 유현숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.71-74
    • /
    • 2000
  • 단어의 의미 중의성을 해소하는 것은 자연언어처리의 중요한 문제 중의 하나이다. 특히 문서의 주제어가 중의성을 가질 때, 이 문서는 부적합한 범주에 속하게 되어 정보검색시 잡음을 일으키는 원인이 되기도 한다. 그러므로, 본 논문에서는 문서를 대표하는 주재어의 의미 중의성을 해소하기 위해 주변 문맥자질을 고려하는 방법을 모색한다 이를 위해 자연언어처리의 통계적 방법으로 문서 범주화에 많이 사용되는 Naive Bayes 분류기를 중의성 해소에 적용하고, 그 결과 얻어진 중의성 해소 성능을 평가한다.

  • PDF

Exploration of Intellectual Structure of Artificial Intelligence Field Using Co-word Analysis (동시출현 단어 분석을 통한 지식 구조의 파악 : 인공지능 분야를 대상으로)

  • 이미경;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.245-251
    • /
    • 2003
  • 이 연구에서는 통제된 색인어를 이용하여 파악한 지식 구조와 통제되지 않은 키워드를 이용한 지식 구조를 비교하여 두 구조가 어떤 차이점을 보이는지를 살펴보았다. 또한 색인효과가 어떻게 나타나는지, 비통제어를 사용한 경우가 실제적으로 더 상세한 하위 영역을 표현하는지를 확인하고자 하였다. 실험 결과 통제된 색인어인 주제명표목을 사용한 영역지도와 비통제 색인어인 키워드를 사용한 영역지도 둘 다 인공지능 분야의 주요 분야들을 비슷하게 나타냈지만, 주제명표목을 사용한 경우에 색인효과가 일부 나타났다. 그리고 대체적으로 주제명표목에 기반한 영역지도보다는 키워드에 기반한 영역지도가 더 상세하게 나타났다.

  • PDF

An Evaluation of the Performance of Query Expansion Using Citation Information of Retrieved Documents (검색 문헌의 인용 분석을 통한 질의확장의 성능 평가 연구)

  • Yu, So-Young;Jung, Young-Mee
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2005.08a
    • /
    • pp.305-310
    • /
    • 2005
  • 이 연구에서는 주제검색을 통해 검색된 문헌들의 인용정보를 이용한 질의확장 기법을 제안하였으며 이 제안된 기법의 성능을 일반적 질의확장 기법인 지역적 질의확장 및 전역적 질의확장과 비교 평가하였다. 연구 결과 인용기반 질의확장 기법이 전역적 및 지역적 질의확장 기법에 비해 우수한 성능을 보임을 확인하였으며, 특히 피인용 표제어를 이용한 질의확장 검색의 효용성을 실험을 통해 밝혀냈다.

  • PDF

Newspaper Thesaurus Construction in Theory and Practice (신문 시소러스 개발의 이론과 실제)

  • Chung Young-Mee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.25
    • /
    • pp.51-82
    • /
    • 1993
  • Effective indexing systems are required to enhance the performance of full-text retrieval systems. The result of the analysis of index terms selected by human indexers without a newspaper thesaurus indicates that controlled indexing language is necessary for effective and consistent indexing of newspaper articles. In this paper, basic principles are established for keyword selection from Korean newspapers and significant problems identified in the process of developing a newspaper thesaurus are discussed in depth.

  • PDF

Artificial Intelligence Applications in Library and Information Science (도서관$\cdot$정보학에서의 인공지능의 응용에 관한 고찰)

  • Chung Young Mee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.14
    • /
    • pp.67-92
    • /
    • 1987
  • In this paper, artificial intelligence applications in library and information science are reviewed. Especially, natural language processing and expert systems are represented as the two major application areas. In natural language processing, natural language interface systems and .question-answering systems are discussed in detail with some specific examples. In the second part of the paper, online search intermidiary systems, reference expert systems, classification and cataloging expert systems are described as possible expert systems to be developed in libraries and information systems. As a conclusion, implications of the artificial intelligence applications for librarians and information scientists are suggested.

  • PDF