• Title/Summary/Keyword: 정성적 데이터

Search Result 677, Processing Time 0.03 seconds

Robust Coronary Artery Segmentation in 2D X-ray Images using Local Patch-based Re-connection Methods (지역적 패치기반 보정기법을 활용한 2D X-ray 영상에서의 강인한 관상동맥 재연결 기법)

  • Han, Kyunghoon;Jeon, Byunghwan;Kim, Sekeun;Jang, Yeonggul;Jung, Sunghee;Shim, Hackjoon;Chang, Hyukjae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.592-601
    • /
    • 2019
  • For coronary procedures, X-ray angiogram images are useful for diagnosing and assisting procedures. It is challenging to accurately segment a coronary artery using only a single segmentation model in 2D X-ray images due to a complex structure of three-dimensional coronary artery, especially from phenomenon of vessels being broken in the middle or end of coronary artery. In order to solve these problems, the initial segmentation is performed using an existing single model, and the candidate regions for the sophisticate correction is estimated based on the initial segment, and the local patch-based correction is performed in the candidate regions. Through this research, not only the broken coronary arteries are re-connected, but also the distal part of coronary artery that is very thin is additionally correctly found. Further, the performance can be much improved by combining the proposed correction method with any existing coronary artery segmentation method. In this paper, the U-net, a fully convolutional network was chosen as a segmentation method and the proposed correction method was combined with U-net to demonstrate a significant improvement in performance through X-ray images from several patients.

An Analysis of Patent Co-Classification Network for Exploring Core Technologies of Firms: An Application to the Foldable Display Sector (기업별 핵심기술 탐색을 위한 특허의 동시분류 네트워크 분석: 폴더블 디스플레이 분야에 대한 적용)

  • Yun, Namshik;Ji, Ilyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.382-390
    • /
    • 2019
  • As there is severe competition in the global foldable display market, strategic technology planning is required. Patent analysis as a tool for technology planning has frequently been used due to data characteristics such as openness, formality, and detailed information. However, traditional patent analysis has various limitations such as quantitative approaches are limited in evaluating contents of patents and identifying core technologies of firms as they rely on number of patents, and qualitative approaches have time and cost problems as researchers have to investigate each patent on a case-by-case basis. In this research, we analyze core technologies of firms in the foldable display sector analyzing patent co-classification Network. Results show that the number of patent applications has rapidly increased since 2014, and 92% of these patents are held by two panel manufacturers, SDC and LGD, and two device manufacturers, SEC and LGE. Network analysis shows that the two panel manufacturers' core technologies are similar and two device manufacturers are notably different. This research provides implications to the sector. Moreover, this study provides unique results drawn from co-classification network analysis, and therefore, our research suggests patent co-classification analysis as an effective tool for technology planning.

A Study on Applying the Nonlinear Regression Schemes to the Low-GloSea6 Weather Prediction Model (Low-GloSea6 기상 예측 모델 기반의 비선형 회귀 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.489-498
    • /
    • 2023
  • Advancements in hardware performance and computing technology have facilitated the progress of climate prediction models to address climate change. The Korea Meteorological Administration employs the GloSea6 model with supercomputer technology for operational use. Various universities and research institutions utilize the Low-GloSea6 model, a low-resolution coupled model, on small to medium-scale servers for weather research. This paper presents an analysis using Intel VTune Profiler on Low-GloSea6 to facilitate smooth weather research on small to medium-scale servers. The tri_sor_dp_dp function of the atmospheric model, taking 1125.987 seconds of CPU time, is identified as a hotspot. Nonlinear regression models, a machine learning technique, are applied and compared to existing functions conducting numerical operations. The K-Nearest Neighbors regression model exhibits superior performance with MAE of 1.3637e-08 and SMAPE of 123.2707%. Additionally, the Light Gradient Boosting Machine regression model demonstrates the best performance with an RMSE of 2.8453e-08. Therefore, it is confirmed that applying a nonlinear regression model to the tri_sor_dp_dp function during the execution of Low-GloSea6 could be a viable alternative.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.

A Study on Daytime Transparent Cloud Detection through Machine Learning: Using GK-2A/AMI (기계학습을 통한 주간 반투명 구름탐지 연구: GK-2A/AMI를 이용하여)

  • Byeon, Yugyeong;Jin, Donghyun;Seong, Noh-hun;Woo, Jongho;Jeon, Uujin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1181-1189
    • /
    • 2022
  • Clouds are composed of tiny water droplets, ice crystals, or mixtures suspended in the atmosphere and cover about two-thirds of the Earth's surface. Cloud detection in satellite images is a very difficult task to separate clouds and non-cloud areas because of similar reflectance characteristics to some other ground objects or the ground surface. In contrast to thick clouds, which have distinct characteristics, thin transparent clouds have weak contrast between clouds and background in satellite images and appear mixed with the ground surface. In order to overcome the limitations of transparent clouds in cloud detection, this study conducted cloud detection focusing on transparent clouds using machine learning techniques (Random Forest [RF], Convolutional Neural Networks [CNN]). As reference data, Cloud Mask and Cirrus Mask were used in MOD35 data provided by MOderate Resolution Imaging Spectroradiometer (MODIS), and the pixel ratio of training data was configured to be about 1:1:1 for clouds, transparent clouds, and clear sky for model training considering transparent cloud pixels. As a result of the qualitative comparison of the study, bothRF and CNN successfully detected various types of clouds, including transparent clouds, and in the case of RF+CNN, which mixed the results of the RF model and the CNN model, the cloud detection was well performed, and was confirmed that the limitations of the model were improved. As a quantitative result of the study, the overall accuracy (OA) value of RF was 92%, CNN showed 94.11%, and RF+CNN showed 94.29% accuracy.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

A Study of the Application of 'Digital Heritage ODA' - Focusing on the Myanmar cultural heritage management system - (디지털 문화유산 ODA 적용에 관한 시론적 연구 -미얀마 문화유산 관리시스템을 중심으로-)

  • Jeong, Seongmi
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.198-215
    • /
    • 2020
  • Official development assistance refers to assistance provided by governments and other public institutions in donor countries, aimed at promoting economic development and social welfare in developing countries. The purpose of this research is to examine the construction process of the "Myanmar Cultural Heritage Management System" that is underway as part of the ODA project to strengthen cultural and artistic capabilities and analyze the achievements and challenges of the Digital Cultural Heritage ODA. The digital cultural heritage management system is intended to achieve the permanent preservation and sustainable utilization of tangible and intangible cultural heritage materials. Cultural heritage can be stored in digital archives, newly approached using computer analysis technology, and information can be used in multiple dimensions. First, the Digital Cultural Heritage ODA was able to permanently preserve cultural heritage content that urgently needed digitalization by overcoming and documenting the "risk" associated with cultural heritage under threat of being extinguished, damaged, degraded, or distorted in Myanmar. Second, information on Myanmar's cultural heritage can be systematically managed and used in many ways through linkages between materials. Third, cultural maps can be implemented that are based on accurate geographical location information as to where cultural heritage is located or inherited. Various items of cultural heritage were collectively and intensively visualized to maximize utility and convenience for academic, policy, and practical purposes. Fourth, we were able to overcome the one-sided limitations of cultural ODA in relations between donor and recipient countries. Fifth, the capacity building program run by officials in charge of the beneficiary country, which could be the most important form of sustainable development in the cultural ODA, was operated together. Sixth, there is an implication that it is an ODA that can be relatively smooth and non-face-to-face in nature, without requiring the movement of manpower between countries during the current global pandemic. However, the following tasks remain to be solved through active discussion and deliberation in the future. First, the content of the data uploaded to the system should be verified. Second, to preserve digital cultural heritage, it must be protected from various threats. For example, it is necessary to train local experts to prepare for errors caused by computer viruses, stored data, or operating systems. Third, due to the nature of the rapidly changing environment of computer technology, measures should also be discussed to address the problems that tend to follow when new versions and programs are developed after the end of the ODA project, or when developers have not continued to manage their programs. Fourth, since the classification system criteria and decisions regarding whether the data will be disclosed or not are set according to Myanmar's political judgment, it is necessary to let the beneficiary country understand the ultimate purpose of the cultural ODA project.

Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis (마이크로-CT 뼈 영상 분석을 위한 구 정합 기반 해면뼈의 자동 분할)

  • Kang, Sun Kyung;Kim, Young Un;Jung, Sung Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.329-334
    • /
    • 2014
  • In this study, a new method that automatically segments trabecular bone for its morphological analysis using micro-computed tomography imaging was proposed. In the proposed method, the bone region was extracted using a threshold value, and the outer boundary of the bone was detected. The sphere of maximum size with the corresponding voxel as the center was obtained by applying the sphere-fitting method to each voxel of the bone region. If this sphere includes the outer boundary of the bone, the voxels included in the sphere are classified as cortical bone; otherwise, they are classified as trabecular bone. The proposed method was applied to images of the distal femurs of 15 mice, and comparative experiments, with results manually divided by a person, were performed. Four morphological parameters-BV/TV, Tb.Th, Tb.Sp, and Tb.N-for the segmented trabecular bone were measured. The results were compared by regression analysis and the Bland-Altman method; BV/TV, Tb.Th, Tb.Sp, and Tb.N were all in the credible range. In addition, not only can the sphere-fitting method be simply implemented, but trabecular bone can also be divided precisely by using the three-dimensional information.

Asset Management Information in the Social Infrastructure (공공시설 자산관리 정보화 방안)

  • Choi, Won-Sik;Nah, Hei-Suk;Seo, Myoung-Bae;Jeong, Seong-Yun;Lim, Jong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.68-79
    • /
    • 2010
  • With the social infrastructure being deteriorated, there is a growing need to introduce the asset management to social infrastructure management in order to increase their value and save budget. Social infrastructure asset management is a new concept of facility management in response to these demands. It is defined as a procedure for collecting and analysing facility maintenance data and for making and practicing an economically optimized management plan. Detailed survey work of asset management business is analyzed in order to derive a strategy for asset management information. The contents of IIMM of New Zealand and the asset management definition of the FHWA of the United States, and representative facility management systems of Korea are analysed. The role between organizations and the relationship between business and organization were analyzed. Information required for asset management and for existing facility management systems is compared with business of asset management. In this thesis, three development strategies are suggested. The first one is to develop core business of asset management while excluding duplicated development. The second one is to divide system's structure into three layers. And the last one is to share information by interfacing asset management systems with existing facility management systems.

Design and Implementation of NMEA Multiplexer in the Optimized Queue (최적화된 큐에서의 NMEA 멀티플렉서의 설계 및 구현)

  • Kim Chang-Soo;Jung Sung-Hun;Yim Jae-Hong
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.91-96
    • /
    • 2005
  • The National Marine Electronics Association(NMEA) is nonprofit-making cooperation composed with manufacturers, distributors, wholesalers and educational institutions. We use the basic port of equipment in order to process the signal from NMEA signal using equipment. When we don't have enough one, we use the multi-port for processing. However, we need to have module development simulation which could multiplex and provide NMEA related signal that we could solve the problems in multi-port application and exclusive equipment generation for a number of signal. For now, we don't have any case or product using NMEA multiplexer so that we import expensive foreign equipment or embody NMEA signal transmission program like software, using multi-port. These have problems since we have to pay lots ci money and build separate processing part for every application programs. Besides, every equipment generating NMEA signal are from different manufactures and have different platform so that it could cause double waste and loss of recourse. For making up for it, I suggest the NMEA multiplexer embodiment, which could independently move by reliable process and high performance single hardware module, improve the memory efficiency of module by designing the optimized Queue, and keep having reliability for realtime communication among the equipment such as main input sensor equipment Gyrocompass, Echo-sound, and GPS.