• Title/Summary/Keyword: 정상적 예측 방법

Search Result 434, Processing Time 0.038 seconds

Fault rupture directivity of Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 단층파열방향성)

  • Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Fault rupture directivity of the Odaesan earthquake, which was inferred to be the main cause of the high PGAvalue (> 0.1 g) unusually observed at the near-source region, was analyzed by using the data from the nearby (R < 100 km) dense seismic stations. The Boatwright's method (2007) was adopted for this purpose in which the azimuth and takeoff angle of the unilateral rupture directivity function could be estimated based on the relative peak ground-motions of seismic stations resulting from the nature of the rupture directivity. In this study, the approximate values of the relative peak ground-motions was derived from the difference between the log residuals of the point-source spectral model (Boore, 2003) for the main and secondary events based on the Random Vibration Theory. In this derivation, the spectral difference for a frequency range between the source corner frequencies of main and secondary events was considered to reflect only the effect of the fault directivity. The inversion result of the model parameters for the fault directivity function showed that the fault-plane of NWW-SEE direction dipping steeply to the North with high rupture velocity near upward in SE direction is responsible for the observed high level of ground-motion at the near-source region.

A study of Modeling and Simulation for Analyzing DDoS Attack Damage Scale and Defence Mechanism Expense (DDoS 공격 피해 규모 및 대응기법 비용분석을 위한 모델링 및 시뮬레이션 기술연구)

  • Kim, Ji-Yeon;Lee, Ju-Li;Park, Eun-Ji;Jang, Eun-Young;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 2009
  • Recently, the threat of DDoS attacks is increasing and many companies are planned to deploy the DDoS defense solutions in their networks. The DDoS attack usually transmits heavy traffic data to networks or servers and they cannot handle the normal service requests because of running out of resources. Since it is very hard to prevent the DDoS attack beforehand, the strategic plan is very important. In this work, we have conducted modeling and simulation of the DDoS attack by changing the number of servers and estimated the duration that services are available. In this work, the modeling and simulation is conducted using OPNET Modeler. The simulation result can be used as a parameter of trade-off analysis of DDoS defense cost and the service's value. In addition, we have presented a way of estimating the cost effectiveness in deployment of the DDoS defense system.

Shear Load Transfer Characteristics of Friction Piles in Deep Soft Clay (대심도 연약지반상 마찰말뚝의 주면하중전이 거동 분석)

  • Moon, Joon-Shik;Paek, Jin-Yeol;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.55-67
    • /
    • 2011
  • The shear load distribution and deformation of offshore friction piles are investigated using experimental tests and a numerical analysis. Special attention is given to the soil-pile interaction of axially loaded pile. A framework for determining the f-w curve is proposed based on both theoretical analysis and experimental load test data base. A numerical analysis that takes into account the proposed f-w curves was performed for major parameters on pile-soil interaction such as the pile diameter, the pile length, and the soil condition. Based on the analysis, it is shown that the proposed f-w method is capable of predicting the behavior of a friction pile in deep soft clay. Through comparisons with case histories and finite element results, it is found that the proposed f-w curves are more appropriate and realistic m representing the pile-soil interaction of axially loaded piles in deep soft clay than that of existing f-w method.

Reliability Analysis for Decoy using Maintenance Data (정비 데이터를 이용한 기만체계 신뢰도 분석)

  • Gwak, Hye-Rim;Hong, Seok-Jin;Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.82-88
    • /
    • 2018
  • The decoy defensive weapon system is a one-shot system. Reliability is maintained through periodic inspection and high reliability is required to confirm whether or not the functioning is normal after launch. The maintenance cycle of a decoy was set up without target reliability and reliability prediction during the development period. However, the number of operations in the military has been increasing, necessitating the optimization of the maintenance cycle. Reliability is analyzed using the maintenance data of a decoy operated for several decades and the optimal maintenance cycle is suggested. In chapter 2, data collection and classification methods are presented and analysis methodology is briefly introduced. In chapter 3, the data distribution analysis and fitness verification confirmed that applying the Weibull distribution is the most suitable for the maintenance data of the decoy. In chapter 4, we present the analysis result of percentile, survival probability and MTBF and the optimal maintenance cycle was derived from the reliability analysis. Finally, we suggest the application methods for this paper in the future.

Shaft Group Efficiency of Friction Pile Groups in Deep Soft Clay (대심도 마찰무리말뚝의 주면 무리효율 분석)

  • Paek, Jin-Yeol;Cho, Jae-Yeon;Jeong, Sang-Seom;Hwang, Taik-Jean
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.49-60
    • /
    • 2012
  • In this study, the behaviors of friction pile groups are investigated using 3D finite element (FE) analysis. The emphasis was quantifying on the shear load transfer (f-w) characteristics of pile groups and the shaft group effects. A framework for determining the f-w curve is proposed based on both theoretical analysis and field load test database. Through comparisons with case histories and FE results, it is shown that the proposed f-w curve is capable of predicting the behavior of a friction pile in deep soft clay. Additionally, a numerical analysis that takes into account the group efficiency factors were performed for major parameter on group pile-soil interaction, such as the pile spacing, pile arrangement, soil condition, and location of pile cap. Based on these results, the shaft group efficiency factors were also proposed.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

Abnormal Perfusion on Myocardial Perfusion SPECT in Patients with Wolff-Parkinson-White Syndrome (Wolff-Parkinson-White 증후군 환자의 심근 관류 이상)

  • Kang, Do-Young;Cha, Kwang-Soo;Han, Seung-Ho;Park, Tae-Ho;Kim, Moo-Hyun;Kim, Young-Dae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Purpose: Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkinson-White) syndrome. Materials and Methods: Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECG with Fitzpatrick's algorithm or electrophysiologic study and radiofrequency catheter ablation. Results: Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients (mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent ($11.0{\pm}8.5%$, range:$3{\sim}35%$) and mild to moderate severity ($-71{\pm}42.7%$, range:$-2l7{\sim}-39%$) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patient with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Conclusion: Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but it did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

Optimization for the Physical Properties of Steamed Foam Cakes Prepared with Single-stage Method by Response Surface Methodology (반응표면 분석법에 의한 단단계법 거품형 찜 케이크의 물리적 특성의 최적화)

  • Kwhak, Sung-Ho;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.557-566
    • /
    • 2005
  • In preparation of steamed foam-cakes, effects of whipping time, amount of wheat flour, and amounts of emulsifier on physical properties of the steamed foam cakes were investigated using RSM (response surface methodology). The three independent variables selected for the RSM experiment were whipping time $(X_1)$, amount of wheat flour $(X_2)$, and amounts of wheat flour $(X_2)$, and concentration of emulsifier $(X_3)$ were set for single-stage mixing, respectively. A rotatable central composite design was used for treatment arrangement. The responses from the product for loaf volume, color values and textural properties were analysed. In the analysis of variance for the foam cakes prepared by single-stage method, significant interactions were observed between independent variables (experimental factors) and physical property like loaf volume (p<0.05); textural properties like hardness, gumminess, and chewiness (p<0.05). Among independent variables, concentration of emulsifier had the most effects on physical properties while whipping time. The ordinary points in surface response showed maximal points with physical property like colorimetric b value while other properties revealed saddle points. The 3-dimensional response surface graphs of the predicted regression models displayed decreasing loaf volumes with increasing whipping times and emulsifier concentrations beyond optimum levels. The optimum conditions for best loaf volume and textural property (hardness, gummimess and chewiness) of the products selected by extracting intersectional areas of the contour maps that commonly overlapped all characteristics were; $11\~13$ min whipping time, $470\~486\;g$ amount of wheat flour, and $19\~20\;g$ emulsifier concentration, in case of single-stage method. The median values extracted from the RSM experimental results for optimum manufacturing conditions for single-stage method, i.e., 12 min whipping time, 478 g amount of wheat flour, and 20 g emulsifier concentration were empirically proven to fit the predicted levels of physical properties from the final foam cakes.