In this paper, we study a method to discriminate between trend stationary and difference stationary processes. Since a crucial ingredient of this discrimination is to determine the existence of unit root, we can use a unit root testing strategy. So, we introduce a discrimination based on unit root testing and propose the method using the adaptive lasso. Our Monte Carlo simulation experiments show that the adaptive lasso improves the discrimination accuracy when the process is trend stationary, but has lower accuracy than unit root strategy where the process is difference stationary.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.686-688
/
2020
본 논문에서는 U-Net 모델을 이용하여 정교하고 반복되는 패턴을 가진 인쇄물에 대한 비지도 학습을 통한 딥러닝 기반 이상치탐지(Anomaly Detection) 방법을 제안하였다. 인쇄물(카드)의 비정상 패턴 검출을 위하여 촬영한 영상으로부터 카드 영역을 분리한 이미지로 구성된 Dataset을 구축하였고 정상 이미지와 동일한 이미지를 출력하기 위해, 정상 이미지와 마스크 이미지 쌍의 Training dataset을 U-Net으로 학습하였다. Test dataset의 이미지를 입력으로 넣어 생성된 마스크 결과를 원본 마스크 이미지와 비교하여 이상 여부를 판단하는 본 논문의 방법이 정상, 비정상 인쇄물을 잘 구분하는 것을 확인하였다. 또한 정상과 비정상 이미지 각각을 학습한 지도학습 기반 CNN 분류 방법을 입력 영상과 복원 영상 간의 복원 오차를 비교하여 객체의 이상 여부를 판별하는 본 논문의 방법과 비교 평가하였다. 본 논문을 통해 U-Net을 사용하여 별도로 데이터에 대한 label 취득 없이 이상치를 검출할 수 있음을 확인할 수 있었다.
Kim, Hanbeen;Joo, Kyungwon;Jung, Younghun;Heo, Jun-Haeng
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.298-298
/
2016
최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.306-309
/
2006
SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 본 논문에서는 SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거된 정상 데이터로 복원하는 방법에 대해서 논한다. 그리고 저해상도의 이미지를 고해상도의 이미지로 복원함으로써 본 논문의 방법론이 어떻게 실용적으로 적용되는지에 대해서 다룬다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.31
no.8
/
pp.19-26
/
2003
A steady prediction method of dynamic stability derivatives is presented in the unified framework of the unsteady Euler equations. New approach does not require any modification of the governing equations except addition of non-inertial force terms. The present methods are applied to compute the pitch-damping coefficients using the lunar coning and the lunar helical motions in the Cartesian coordinate frame. The results for the ANSR and the Basic Finner are in good agreement with the PNS data, range data, and the results using the unsteady prediction method. The results show that the steady approach using the unified governing equations in the Cartesian coordinate frame can be successfully applied to predict the pitch-damping coefficients.
본 연구는 rat에서 PMSG도는 FSH 처리에 의한 과배란 유도가 배란율과 수정란의 질에 미치는 영향을 알아보기 위해 호르몬 처리하고 교미시킨 후 4일령에 난관과 자궁을 세척하여 정상 8-세포기 난자와 비정상 난자를 조사하였고 각 처리에서 채란된 난자 중에 정상난자를 골라 체외 배양하여 발육율을 비교 평가하였다. 미성숙 rat에서는 평균19.1개의 수정란이 채취되었으며 성숙rat에서는 14.2개가 채취되었고 미성숙 rat에서는 성숙 rat에 비해 더 많은 비율의 비정상적인 난자가 회수되었다. FSH와 LH-RH에 의한 방법이 PMSG와 HCG에 의한 방법보다 유의성 있게 많은 난자를 배란시켰으며, 비정상란의 빈도도 낮은 것으로 나타났다. 그러나 호르몬 처리에 의한 두 가지 방법은 자연배란에 의한 방법에 비해 훨씬 높은 비정상난자의 배란을 유도하였다(FSH, 20.1%;PMSG, 41.2%;자연배란 13.4%). 또한 FSH처리에 의해 회수된 난자보다 체외 발육율이 높은 것으로 나타났다. 그러므로 rat에서 PMSG와 FSH를 이용하여 과배란을 유도할 수 있으나 배란된 난자의 비정상율은 자연배란에 비해 훨씬 높았고, 과배란 유도시 호르몬의 종류에 따라 체외 배양율에도 영향을 미치는 것으로 나타났다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.664-666
/
2002
침입 탐지 시스템 연구에서 정상 행위와 비정상 행위를 구별하기 위한 방법으로 시스템 콜 시퀀스를 이용하는 방법들이 많이 소개되었다. 그 중에서도 정상적인 시스템 콜 시퀀스를 프로파일링 하는데 있어서 오토마타를 이용하는 방법들이 제안되었다. 그러나 정상적인 시스템 콜 시퀀스의 오토마타를 생성하는데 있어서 수동적으로 생성하는 방법이 대부분이었고, 자동적으로 생성하는 방법도 제안되었다. 본 논문에서는 시스템 콜 시퀀스에 대한 오토마타를 자동으로 생성하는 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2002.04a
/
pp.805-807
/
2002
악성 코드를 포함하고 있는 악성 오브젝트(또는 프로그램)들을 막기 위한 방법으로서 오브젝트의 정상 행위를 정의해 놓고 정상행위에서 벗어나면 악성으로 판단하는 Sandbax, MAPBox등이 있다. 이러한 방법들 모두 오브젝트의 정상행위가 무엇인가를 정의하고, 정상행위에 맞는 자원을 할당하는데 초점을 맞추고 있다. 하지만. 정상행위로 정의된 행위의 범위 안에서도 악성행위를 할 수 있다. 본 논문에서는 정상행위의 범위 안에서 발생할 수 있는 악성행위를 막기 위한 방법으로서 사용자와 오브젝트와의 관계를 고려한 강화된 악성 객체 방지 기법에 대하여 제시하였다.
Kim, Hanbeen;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.143-143
/
2015
기존의 빈도해석에서는 자료의 정상성을 가정하며, 이에 따라 적정모형 선정 시에 $x^2$ 검정이나 PPCC(Probability Plot Correlation Coefficient)검정과 같은 적합도 검정방법을 사용한다. 하지만 자료에서 경향성이 나타나거나 평균, 분산, 매개변수 등이 시간에 따라 변하는 등의 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발히 진행되고 있다. 비정상성 빈도해석에서는 시간항과 같은 공변량이 포함된 매개변수를 가지는 비정상성 모형을 적용하게 되는데, 시간에 따라 매개변수가 계속 변하므로 매개변수에 따라 검정통계량이 고정되어 있는 기존의 적합도 검정방법의 적용이 어렵다. 따라서 비정상성 빈도해석의 적정 모형 선정에 적용할 수 있는 방법으로 최우도 함수에 기반한 모형 평가 방법인 AIC와 BIC가 추천되고 있으며 자료길이가 충분하지 않은 경우에는 AIC 대신하여 AICc의 사용이 추천되고 있다. 본 연구에서는 극치사상을 나타내는데 적합한 분포형인 GEV분포형의 위치, 규모 매개변수를 시간항으로 나타낸 다양한 비정상성 GEV모형에 대하여 Monte-Carlo 모의실험을 통해 AICc와 BIC의 적용성을 검토하였으며, 비정상성이 관측되는 실측 자료에 적용해보았다.
본 논문에서는 전력품질 향상용 전력전자기기의 제어에 중요한 정보인 전원의 위상각을 검출하는 기존의 방법들에 대해서 먼저 알아보고, 그 중 불평형한 전원단 전압조건에서도 정확한 위상각을 검출할 수 있는 전차원 상태관측기를 이용한 정상분 전압 추출 PLL(Phase Locked Loop) 방법을 제안한다. 제안된 PLL 방법은 기존의 전역 통과 필터(APF, All Pass Filter)를 이용한 정상분 전압추출기 대신 전차원 상태관측기를 사용함으로써 불평형사고 발생 시 과도상태 응답특성을 개선하였다. 기존의 정상분 전압 추출 PLL 방법과 본 논문에서 제안된 PLL 방법의 성능을 비교하기 위해, 전원단 전압에 불평형 사고 발생시 위상각을 검출하는 모의실험과 실험을 하였고, 이를 통해 기존의 전역 통과 필터를 이용한 정상분 전압 추출 PLL 방법보다 제안된 전차원 상태관측기를 이용한 정상분 전압 추출 PLL 방법의 과도상태 응답특성이 개선됨을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.