• Title/Summary/Keyword: 정상/비정상 공력해석

Search Result 111, Processing Time 0.024 seconds

Three Dimensional Aerodynamic Characteristics of a Small Bee in Hovering Flight (정지비행하는 작은 벌의 3차원 공력특성)

  • Ro, Ki-Deok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.102-108
    • /
    • 2006
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the discrete vortex method. In this mechanism, two wings open, touching their trailing edges (fling), and rotate in opposite directions in the horizontal plane. The structure of the vortex systems shed from the wings is very complicated and their effects on the forces on the wings have not yet been clarified. The discrete vortex method, especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The wings are represented by lattice vortices, and the shed vortices are expressed by discrete three-dimensional vortex sticks. The vortex distributions and the velocity field are calculated. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained.

  • PDF

Nonlinear Flutter Analysis of Missile Fin considering Dynamic Stiffness of Actuator (구동장치의 동강성을 고려한 미사일 조종날개의 비선형 플러터 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In;Han, Jae-Hung;Shin, Young-Suk;Lee, Yeol-Wha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • Nonlinear aeroelastic analyses of a missile control fin are performed considering backlash and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces, and aerodynamic forces are approximated by the minimum-state approximation. For nonlinear flutter analysis backlash is represented by a free-play and is linearized by using the describing function method. Also, dynamic stiffness is function of frequency and is calculated by solving equation of motion for actuator. The linear and nonlinear flutter analyses show that the aeroelastic characteristics are significantly dependent on the backlash and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below the linear divergent flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are also investigated in the time domain.

The Analysis of the Unsteady Flow Field and Aerodynamic Sound of Fan Motor in a Vacuum Cleaner (진공청소기용 팬 모터의 비정상 유동 해석 및 공력소음 해석)

  • 김재열;심재기;송경석;오성민;양동조;김우진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.281-286
    • /
    • 2004
  • The vacuum cleaner motor runs on very high speed for the suction power. Specially, the motive power is provided by the impeller being rotate on very high speed. And centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed or the impeller and small gap distance between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, the unsteady flow data is needed. And Noise cause is dividing to fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, measuring method has been used to measure vibration by the accelerometer; this method has been not measured for the vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This paper was purposed on the accurate analysis, using laser vibration analyzer,. By using this measured data of noise cause against the difficult part in old times, we would like to use for the design of silent fan motor.

  • PDF

Thickness and Loading Noise from Helicopter Rotor at various Pitch Angles (피치각 변화에 따른 헬리콥터 로터에서의 두께 및 하중소음 방사)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.868-874
    • /
    • 2007
  • Noises from the helicopter rotor model are calculated numerically at various pitch angles. The aerodynamic data are calculated by using prescribed wake model and unsteady panel method. The distribution of aerodynamic loads on the blade surface are obtained from $0^{\circ}$ to $9^{\circ}$ pitch angles with equiangular increments of $1.5^{\circ}$. Although thickness noise is not related to the change of pitch angles, loading noise level increases about 3~4dBA every $1.5^{\circ}$ increment of pitch angle. The additive noise level shows sufficient value to perceive the loudness. From the result of directivity pattern the sound level at the lower region of the blade disc plane is higher than that of the upper region.

Numerical Study on the Aerodynamic Characteristics of Wings on the Formation Flight (편대비행 중인 날개들의 공력특성에 대한 수치적 연구)

  • Lee, Seung-Jae;Cho, Jeong-Hyun;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • The steady-state aerodynamic characteristics of wings on the formation flight were analyzed using the Vortex Lattice Method. When two wings were at formation flight, the sectional lift coefficient of a rear wing was increased due to a front wing. The result showed that the lift drag ratio increased as the rear wing were placed downward and decreased as the lateral spacing between wings increased. The difference of lift drag ratio between forward wing and rear wing increase as the aspect ratio of wings increased. When a rear wings and a forward wings placed at the same height, wings on the formation flight had the maximum lift drag ratio. The results showed that the benefit of the formation flight increased as the number of wings on the formation flight increased.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

A Numerical Study on the Generation and Propagation of Intake Noise in the Reciprocating Engine (엔진 흡기계의 소음발생 및 전파에 관한 수치연구)

  • 김용석;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.65-70
    • /
    • 1996
  • 엔진소음을 소음특성에 따라 분류하면 공력소음(Aerodynamic Noise), 연소소음(Combustion Noise), 기계적인 소음(Mechanical Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise), 흡기계소음(Intake System Noise), 냉각계소음(Cooling System Noise), 엔진표면소음(Engine System Noise)등으로 분류할 수 있다. 이러한 여러소음중 엔진 내부의 유동에 의한 흡배기계통으로의 소음방출은 자동차 실 내외 소음의 중요한 문제로 대두되는데, 이를 줄이기 위해 그 동안 소음기 등의 서브시스템의 형태와 그 위치조정에 관한 연구가 수행되어 왔다. 그러나 이것이 비용 또는 성능에 영향을 미치므로 본질적인 소음원을 규명해 내는 것이 필요하게 되었다. 흡배기계의 소음은 엔진의 흡입, 배기행 정시 피스톤의 운동에 의해 팽창 및 압축파 형태의 압력파(pressure wave)로 발생하게 되고, 밸브근방에서는 유동의 박리(separation)에 의해 발생하게 된다. 소음기 등의 서브시스템에서도 유동의 박리에 의해 발생하게 되며 특히 배기행정시 발생하는 압력파는 비선형영역에 있게된다. 흡기소음은 배기에 비해 그 크기가 작아서 그동안 등한시 되어왔으나 이것이 소비자의 불평요인으로 작용하므로써 이에 대한 연구도 활발히 수행되어야 한다. Bender, Bramer[1]는 흡배기계 소음의 외부 방사에 관하여 전반적으로 기술하였고 Sierens등[2]은 흡기계에서 1차원 MOC(Method of Characteristics)방법으로 비정상 유동해석을 하고 실험결과와 비교하였다. J.S.Lamancusa 등[3]은 흡기 소음원을 실험을 통해 예측하였고, 흡기소음도 비선형 거동을 보인다고 밝혔다. Yositaka Nishio 등[4]은 새로운 흡기실험장치를 고안하여 공명기(resonator)의 위치 변화에 의한 저소음 흡기계를 설계 초기단계에서부터 적용하려 하였다. 일반적으로 흡배기계의 복잡한 형상 때문에 대부분 실험을 통해 문제를 해결하려 하였고, 수치해석은 피스톤의 운동을 배제한 단순화한 흡배기계의 정상상태 유동해석이 주를 이루어왔다. Taghaui and Dupont 등[5]은 KIVA코드를 사용하여 흡기포트와 연소실 그리고 밸브의 움직임을 동시에 고려한 수치해석을 도입하였다. 하지만 이들이 밸브의 운동을 고려하기 위해 사용한 이동격자는 격자점은 시간에 따라 변화하지만 그 격자의 수가 일정하게 유지되어 있어서 밸브의 완전개폐를 해석할 수가 없다. 강희정[6]은 단일 실린더와 단일 배기밸브를 갖는 문제로 단순화하여 피스톤과 밸브의 움직임을 고려하므로써 배기행정 후 소음이 어떻게 전파해 나가는가를 연구하였다. 본 연구에서도 최소밸브간격과 최대밸브간격 사이에서만 계산이 가능하나 흡기의 경우는 밸브가 닫힐 때 생기는 압력파가 중요하므로 실린더와 밸브사이에 벽면조건을 주어 밸브의 개폐를 모사하였다.

  • PDF

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.

Numerical Investigation on the Flow Noise Characteristics of the Hybrid Vertical-axis Wind Turbine (복합형 수직축 풍력발전기의 유동소음특성에 관한 수치적 고찰)

  • Kim, Sanghyeon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-357
    • /
    • 2014
  • In this paper, flow noise characteristics of the hybrid vertical-axis wind turbine is investigated. Hybrid vertical-axis wind turbines consisting of two types of vertical-axis wind turbines, Savonius and Darrieus, are devised to maximize merits of one turbine and thus minimize demerits of the other turbine. In order to predict flow noise radiating from hybrid vertical-axis wind turbines, hybrid computatioinal aero acoustic techniques are used. First, unsteady flow fields around the turbine are predicted using computational fluid dynamics method. Then, the flow noise radiations from the turbines are predicted by applying acoustic analogy to the predicted flow fields. Based on numerical results, noise characteristics of a hybrid vertical-axis wind turbine is investigated and is compared with those of Savonius and Darrieus wind turbines.