• Title/Summary/Keyword: 정비 주기

Search Result 159, Processing Time 0.024 seconds

A study of the railroad vehicles cycle and method (철도차량 검수주기 및 방법에 관한 연구)

  • Yu, Yang-Ha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.158-166
    • /
    • 2007
  • After constructing the high-speed railroad, KORAIL acquired advanced maintenance techniques about Rolling-stocks. Also RCM theory is applied to maintenance field like as inspection period and method. In the meantime, the development of the maintenance methode for Rolling-stock is slow when it compares to the components and system technology. For this reason KORAIL tries to build the optimal maintenance system which can lead the Rolling-stock maintenance technique. The existing vehicle except High Speed train KTX are separated to electric motor car, electric locomotive, diesel locomotive, diesel car, passenger car and freight car. The inspection period and methode for existing vehicles which mentioned above will be examined and the optimal Rolling-stock maintenance technique will be applied.

  • PDF

A Study on the Determination of Optimal Preventive Maintenance Periods using Simulation (시뮬레이션을 이용한 최적예방정비주기 결정에 관한 연구)

  • 윤익근;하종만;김호연;김동혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.590-597
    • /
    • 2002
  • LNG고압펌프계통은 천연가스 고압 송출에 있어 가용도가 매우 중요한 계통이다. 본 연구에서는 현재 적용되고 있는 예방(계획)정비주기를 가용성 측면에서 재검토했다. 확률적인 운전대수와 운전 및 보전 형태에 연관된 여러제약이 고려할 때 계통 불가용도를 정량화하기 위하여 시뮬레이션 기법을 적용했다. 중도 절단된 형태의 펌프 수명 데이터를 분석해 욕조형의 고장율 함수를 도출했으며 보수시간 데이터를 분석해 확률분포모수를 구했다. 또한 주요 펌프부대설비에 대해서는 상수형의 고장율과 보전율을 도출했다. 분석된 확률모수를 작성된 시뮬레이션 모형에 입력하고 과거의 운전대수 시나리오를 설정해 실험한 결과와 실제 보수 및 운전 자료를 비교해 모형의 유효성을 보였다. 그리고 차후 예상되는 운전요구대수 시나리오를 기정하고 각 예방정비주기별로 반복 실험하여 계통의 불가용도를 보이고 적합한 예방정비주기를 도출했으며 펌프부품 교체비용의 기대 절감액을 보였다.

  • PDF

A Study on Cost Optimization of Preventive Maintenance for the Second Driving Devices for Korea Train Express (KTX 2차 구동장치에 대한 예방정비 비용의 최적화에 관한 연구)

  • Jung, Jin-Tae;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Although the second driving device of KTX, which consists of the wheel and the axle reduction gears unit, is a mechanically integrated structure, its preventive maintenance (PM) requires two separate intervals due to the different technical requirements. In particular, these subsystems perform attaching and detaching work simultaneously according to the maintenance directive. Therefore, to reduce the unnecessary amount of PM and high logistic availability of the train, it is important to optimize PM with regard to reliability-centered maintenance toward a cost-effective solution. In this study, fault tree analysis and reliability of the subsystems, considering the criticality of the components, were performed using the data derived from field data in maintenance. The cost optimization of the PM was derived from a genetic algorithm considering the target reliability and improvement factor. The cost optimization was derived from a maximum of the fitness function of the individual in generation. The optimal TBO of them using the genetic algorithm was 2.85x106 km, which is reduced to approximately 21% compared to the conventional method.

An Approach to Maintenance Cost Estimation for Aircraft Turbofan Engines (항공기용 터보팬 엔진의 성능변수를 이용한 정비 주기 및 비용 예측에 관한 연구)

  • Kang, Myoung-Cheol;Ogaji, Stephen;Pilidis, Pericles;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.257-262
    • /
    • 2008
  • This study presents a detailed analysis of aircraft engine maintenance cost based on the relationships between engine performance and geometric parameters. Some trend equations based on the engine performance and maintenance database were developed for the estimation of shop-visit interval, work-scope, man-hours, material cost and Life Limited Part cost. The results show that this approach can give a more reasonable and detailed estimation of engine maintenance cost than older empirical methods.

  • PDF

A Study on Developing & Operating Concept of Reliability Analysis & Evaluation System for Aircraft Parts (항공기 부품 신뢰도 분석평가체계 개발 및 운영개념 연구)

  • Son, Seok-Hee;Ko, Seung-Chul
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.19-29
    • /
    • 2007
  • This study deals with developing and operating Reliability Analysis & Evaluation System for aircraft parts by analyzing ROKAF's AMMIS and phase inspection data for optimal inspection frequency. We suggest operating model with improving and adjusting inspection cycle by analyzing failure time data and tendency of crack with RELEX and Minitab software.

Calibration Interval Analysis Method Based on F-test and Performance Index of Measurement Reliability Model Using Maintenance Data in Military Weapon Systems (군 무기체계에서 정비 데이터를 이용한 측정신뢰도 모델의 F-검정 및 성능지수 기반 교정주기 분석 기법)

  • Cha, Yun-bae;Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2191-2198
    • /
    • 2017
  • The PME(precision measurement equipment) used in the measurement to check the performance of the equipment in military weapon system is periodically calibrated to maintain measurement reliability during the life cycle. Previous studies suggest that reliability models are determined by considering sample size and characteristics of equipment. However, it may not be fit well to apply a single model assuming the same characteristic distribution for the maintenance date of many kinds of PMEs. This paper proposes that the most suitable calibration interval for maintenance data is selected through the F-test and the performance index evaluation among the calibration intervals estimated from the measurement reliability models assuming the characteristic of the bath-tub curve during the life cycle of various PMEs. The research results show that the reliabilities of various types of equipment are maintained during calibration intervals.

A Development of Maintenance Decision Support System for Gas Turbine Engine (가스터빈 엔진 정비 의사결정 지원시스템 개발)

  • Ki, Ja-Young;Kang, Myoung-Cheol;Lee, Myung-Kuk;Rho, Hong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.586-591
    • /
    • 2012
  • The solution of maintenance decision support system for the gas turbine engine, which is currently operating in GUNSAN combined cycle power plant, was developed and is consist of online monitoring module, periodic performance trending module, optimal compressor washing interval analysis module and hot component management module. Also, GUI platform was applied to this solution for the user to monitoring the analyzed result of engine performance condition and then to make a decision of the consequent maintenance action. In online condition monitoring module, the performance degradation of engine is provided by the analysis of difference between the real time measurement data compared to exist engine performance. The optimal compressor washing interval module produced the washing interval of maximum net profit value by researching the maintenance expense and the loss profit value corresponds to the performance degradation with economic assessment algorithm. Thus, this solution support the user to enable the optimal maintenance and operation of gas turbine engine with overall analysis of engine condition and main information.

  • PDF

Planned Depot Maintenance Interval Decision for Unmanned Aerial Vehicle through Reliability and Maintainability Based Simulation and Operating & Support Cost Analysis (신뢰도 및 정비도 기반 시뮬레이션과 운영유지 비용분석을 통한 무인항공기의 계획창정비 주기결정)

  • Sang Yeob Lee;Jun Hyun Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2023
  • This research sought to determine the optimal cycle of Planned Depot Maintenance (PDM) for Unmanned Aerial Vehicle (UAV), and PDM through Reliability and Maintainability-based simulation and Operating and Support (O&S) cost analysis using Reliability and Maintainability analysis results. The effectiveness of the PDM was verified economically, and the optimal PDM interval that balances UAV effective operations and sustaining engineering costs was presented.

Prediction of Maintenance Period of Equipment Through Risk Assessment of Thermal Power Plants (화력발전설비 위험도 평가를 통한 기기별 정비주기 예측)

  • Song, Gee Wook;Kim, Bum Shin;Choi, Woo Song;Park, Myung Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1291-1296
    • /
    • 2013
  • Risk-based inspection (RBI) is a well-known method that is used to optimize inspection activities based on risk analysis in order to identify the high-risk components of major facilities such as power plants. RBI, when implemented and maintained properly, improves plant reliability and safety while reducing unplanned outages and repair costs. Risk is given by the product of the probability of failure (POF) and the consequence of failure (COF). A semi-quantitative method is generally used for risk assessment. Semi-quantitative risk assessment complements the low accuracy of qualitative risk assessment and the high expense and long calculation time of quantitative risk assessment. The first step of RBI is to identify important failure modes and causes in the equipment. Once these are defined, the POF and COF can be assessed for each failure. During POF and COF assessment, an effective inspection method and range can be easily found. In this paper, the calculation of the POF is improved for accurate risk assessment. A modified semi-quantitative risk assessment was carried out for boiler facilities of thermal power plants, and the next maintenance schedules for the equipment were decided.

고리 원전 4호기 - 국내 최장 423일간 한 주기 무정지 안전 운전 달성

  • 전재풍
    • Nuclear industry
    • /
    • v.16 no.5 s.159
    • /
    • pp.30-41
    • /
    • 1996
  • 고리 4호기가 지난 4월 5일 국내 최장인 423일간(95. 2. 8$\~$96. 4. 5)의 한 주기 무정지 안전 운전을 달성하고 계획 예방 정비를 위해 정지했다. 이러한 쾌거는 지속적인 설비 환경 개선과 철저한 계획 예방 정비를 통해 기계고장률을 제로화하고, 각종 훈련을 통해 운전원들의 운전 능력과 비상 대응 능력을 향상시킨 결과라 할 수 있다. 국내 최장 OCTF 달성의 성과 의의와 과정을 들어본다.

  • PDF