• 제목/요약/키워드: 정분류율

검색결과 28건 처리시간 0.043초

기술력평가 자료를 이용한 중소벤처기업 파산예측 판별모형에 관한 연구 (A Study on Predicting Bankruptcy Discriminant Model for Small-Sized Venture Firms using Technology Evaluation Data)

  • 성웅현
    • 기술혁신학회지
    • /
    • 제9권2호
    • /
    • pp.304-324
    • /
    • 2006
  • 재무분석가들은 기업의 파산에 양향을 미치는 예측변수를 탐색하기 위해서 상당한 연구가 수행되어 왔다. 그러나 기술지향적 중소벤처기업은 일반적으로 역사적 재무자료가 부족하고, 기술경쟁력 수준에 따라 잠재적인 고성장과 고위험이 존재한다. 본 논문에서는 재무자료 대신에 기술력평가 자료를 이용하여 파산을 예측하기 위해서 파산예측 판별모형을 제안하였고, 모형의 정분류율을 통해서 예측력을 검증하기 위해서 교차타당성방법, 최대사후확률방법 등을 사용하였다. 분석결과 중소 벤처기업의 파산예측모형으로 선형판별모형이 로지스틱판별모형보다 적합한 모형이고, 표본자료에 대한 정분류율 추정은 약 69% 이고 정분류율 예측은 약 67% 가 될 것으로 기대된다.

  • PDF

사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구 (Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach)

  • 장남식
    • 경영정보학연구
    • /
    • 제7권2호
    • /
    • pp.23-40
    • /
    • 2005
  • 시장에서의 경쟁이 점차 심화되고 서비스나 상품에 대한 고객들의 요구와 기대치가 증가함에 따라 기업들에 있어 과학적인 데이터 분석에 근거한 경영전략 수립 및 실행의 필요성이 어느 때보다 크게 강조되고 있다. 그러나 인적자원과 및 자금 등을 포함한 가용자원은 한정적이기 때문에 이들 자원을 얼마나 효율적으로 사용하여 효과적인 결과를 획득하는가가 기업 성패를 좌우하는 주요 지표가 되고있다. 본 연구에서는 선택과 집중적 자원 배분이라는 이슈에 초점을 맞춰 사전 세분화를 통해 선정된 고객 군만을 대상으로 고객의 특성을 파악하고 관리하는 방안이 전체 고객을 대상으로 하는 것보다 보다 의미가 있다는 것을 실제 현업데이터를 통해 검증하고자 하였다. 이를 위해 카드사, 이동통신사, 보험사의 고객 인적데이터 및 거래데이터를 수집하였고, 통계분석과 현업전문가의 의견을 수렴해 고객 세분화를 수행하였으며, 각 세분 군별로 데이터마이닝의 의사결정나무 기법을 이용해 해지모형을 구축하여 전체 고객을 대상으로 한 모형과 정분류율과 규칙의 간결성 측면에서 비교 평가하였다. 결과적으로 세분 군별 해지모형이 전체 고객대상 모형에 비해 정분류율은 높거나 비슷한 수준을 유지하면서 보다 간결하고 의미있는 규칙을 제공하였다.

데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교 (Comparison of data mining methods with daily lens data)

  • 석경하;이태우
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1341-1348
    • /
    • 2013
  • 데이터베이스 마케팅과 시장예측 등의 분야에서 분류문제를 해결하기 위해 다양한 데이터마이닝 기법들이 적용되고 있다. 본 연구에서는 데일리 렌즈 고객들의 거래 데이터를 기반으로 의사결정나무, 로지스틱 회귀모형과 같은 기존의 통계적 분류기법과 최근에 개발된 배깅, 부스팅, 라소, 랜덤 포리스트 그리고 지지벡터기계의 분류 성능을 비교하고자 한다. 비교 실험을 위해 데이터 정제, 탐색, 파생변수 생성, 그리고 변수 선택과정을 거쳤다. 실험결과 정분류율 측면에서는 지지벡터기계가 다른 모형보다 근소하게 높았지만 표준편차가 크게 나왔다. 정분류율과 표준편차의 관점에서는 랜덤 포리스트가 가장 좋은 결과를 보였다. 그러나 모형의 해석, 간명성 그리고 학습에 걸리는 시간을 고려하였을 때 라소모형이 적합하다는 결론을 내렸다.

텍스트 마이닝을 활용한 영화흥행 예측 연구 (Study on prediction for a film success using text mining)

  • 이상훈;조장식;강창완;최승배
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1259-1269
    • /
    • 2015
  • 최근 빅 데이터는 학계에서 키워드로 자리매김을 하고 있다. 빅 데이터의 유용성은 학계뿐만 아니라 정부, 지자체 그리고 기업체까지 파급되고 있고, 빅 데이터 속에서 유용한 정보를 도출해 내기 위해 노력하고 있다. 본 연구에서는 영화에 대한 리뷰를 가지고 텍스트 마이닝 (text mining)을 이용한 빅 데이터 분석을 수행한다. 본 연구의 목적은 포털 사이트 'D'사와 영화진흥위원회의 영화에 대한 리뷰 데이터, 그리고 고객들의 평점평균 (score)과 스크린 수 (screen number)를 설명변수로 사용하고, 영화 흥행 여부를 종속변수로 하여 로지스틱 회귀분석을 통한 영화 흥행 예측 모형을 제안하는 것이다. 분석결과, 본 연구에서 제안한 예측모형의 정분류율은 95.74%로 얻어졌다.

GC/MS 분석과 베이지안 분류 모형을 이용한 새 윤활유와 사용 엔진 오일의 동일성 추적과 분류 (Identification and classification of fresh lubricants and used engine oils by GC/MS and bayesian model)

  • 김남이;남금문;김유나;이동계;박세연;이경재;이재용
    • 분석과학
    • /
    • 제27권1호
    • /
    • pp.41-59
    • /
    • 2014
  • 국내 시판제품으로 서울시내에서 구입한 산업용 윤활유, 이륜구동 윤활유, 선박용 윤활유, 자동차용 윤활유(엔진오일, 수동 변속기 기어유, 자동변속기 오일) 등 80종(기유 4종 포함)의 새 윤활유들(80 classes)과 8종의 경유 차량과 16종의 휘발유 차량에 각각 3종씩의 경유와 휘발유 전용 엔진 오일로 교환하여 차량별 및 주행거리별로 각각 채취한 사용 엔진 오일 86종을 GC/MS로 분석한 TIC로 데이터베이스를 만들고, 새 윤활유와 사용 엔진오일들의 동일성 추적과 차량별 분류를 위하여 차원 축소와 베이지안 방식의 분류 모형을 개발하였다. 새 윤활유의 분류는 웨이블렛 적합방법과 주성분 분석방법으로 차원 축소하여 베이지안 방식의 분류 모형을 적용한 결과 각각 97.5%와 96.7%의 정분류율을 보여 차원 축소는 웨이블렛 적합방법이 더 좋은 결과를 나타냈다. 그리고 새 윤활유의 분류에서 선택된 웨이블렛 적합방법의 차원 축소와 베이지안 방식의 분류 모형에 의한 사용 엔진 오일의 차량별 분류(총 24 classes)는 86.4%의 정분류율을 보였고, 경유 차량인지 휘발유 차량인지를 구분하는 차량 연료 타입별 분류(총 2 classes)는 99.6%의 정분류율을 나타내었고, 사용 엔진 오일 브랜드별 분류(총 6 classes)는 97.3%의 정분류율을 나타내었다.

연속형의 텐서곱과 범주형의 직합을 사용한 다항 로지스틱 회귀모형 (A polychotomous regression model with tensor product splines and direct sums)

  • 심송용;강희모
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.19-26
    • /
    • 2014
  • 다항 로지스틱 회귀모형의 설명변수가 연속형과 범주형을 모두 포함할 때 범주형 설명변수는 직합을 적용하고 연속형 설명변수는 텐서곱을 적용하는 모형을 제안한다. 변수선택의 기준으로 BIC를 사용하고, 제안된 모형의 알고리즘을 구현하였다. 구현된 알고리즘을 실제 자료에 적용하여 기존의 방법과 비교하여 제안된 모형이 더 좋은 분류율을 보임을 확인하였다.

기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구 (A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing)

  • 성웅현
    • 기술혁신학회지
    • /
    • 제10권2호
    • /
    • pp.183-205
    • /
    • 2007
  • 본 연구는 기술력평가에 근거해서 중소기업 부실예측 가능성을 사전에 예측할 수 있는 최적 판별 모형을 개발 제안하였다. 판별모형에 포함될 설명변수는 요인분석과 판별모형의 단계별 선택방법에 의하여 선정되었다. 분석결과 선형판별모형이 로지스틱판별모형보다 임계확률 관점에서 적절한 것으로 나타났다. 최적 선형판별모형의 분류 정분류율은 70.4%, 분류 예측력은 67.5%로 나타났다. 최적 선형판별모형의 활용도를 높이기 위해서 확실 범주와 유보범주를 구분할 수 있는 경계값을 설정하였다. 분석결과를 활용하면 기술금융 취급기관은 부실위험 평가와 더불어 기술금융 신청기업의 순위를 부여할 때 유용하게 사용할 수 있을 것으로 기대된다.

  • PDF

국민건강보험 청구자료 기반의 결핵환자 분류 고도화 모형 개발 (Development of Advanced TB Case Classification Model Using NHI Claims Data)

  • 박일수;김유미;최연희;김성수;김은주;원시연;강성홍
    • 디지털융복합연구
    • /
    • 제11권9호
    • /
    • pp.289-299
    • /
    • 2013
  • 본 연구의 목적은 현재 질병관리본부에서 사용하고 있는 건강보험 청구자료 기반의 결핵환자 분류기준을 고도화하여 보다 효과적인 결핵환자감시체계의 토대를 제공하기 위해 수행되었다. 이를 위해 건강보험심사평가원의 2009년 1년간 결핵상병으로 청구된 81,199명 중 10%인 8,118명을 표본추출한 후 실제 결핵환자인지에 대해서 의무기록 조사를 실시하여 조사가 완료되고, 국민건강보험공단 건강보험청구 자료와 매칭이 완료된 7,132명을 최종 분석대상자로 하였다. 결핵환자분류를 위한 모형을 개발하여 평가한 결과 결핵과 관련된 임상전문가 의견과 통계적 분류 알고리즘이 종합적으로 고려된 의사결정나무모형이 가장 우수한 모형으로 평가되었다. 의사결정나무 모형에 따른 결핵분류모형의 주요 독립변수는 연령, 최초 청구시점의 결핵약제 종류수, 최초 청구시점의 이용 의료기관 유형, 최초 청구시점의 청구결핵검사 종류, 2008년 결핵약 투약일수, 최초 청구시점 결핵약제 투약일수, 최초 청구시점 결핵상병 종류로 나타났다. 이 모형의 향상도는 최고 11.8이였으며, 개발된 모형에서 분류된 1~5유형까지 적용하여 청구된 자료 중 결핵이 아님을 예측할 경우, 민감도는 90.6%, 양성예측도는 96.1%, 정분류율은 87.6%로 나타나, 현재 질병관리본부에서 사용하는 청구2회 이상, 약제 2제 이상 모형(민감도 82.6%, 양성예측도 95%, 정분류율 80%)보다 우수한 모형인 것으로 나타났다.

ROC 곡면에서 VUS의 판단기준 (Standard Criterion of VUS for ROC Surface)

  • 홍종선;정의석;정동근
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.977-985
    • /
    • 2013
  • 현실세계에는 두 가지 범주 이상으로 분류되는 경우가 많이 존재한다. 본 논문은 분류범주가 세 종류인 분류모형을 시각적으로 표현하는 방법인 ROC 곡면과 이 곡면 아래의 체적을 나타내는 VUS 통계량을 고려한다. 바젤 II에 기반한 부도확률에 관한 AUC 통계량의 판단기준을 ROC 곡면에서의 VUS에 대하여 확장하여, VUS에 의한 판별력 판단기준 13단계를 제안한다. 제안한 판단기준 각 단계에서의 VUS값에 대응하는 AUC, K-S 통계량 그리고 세 분포의 평균차이에 대한 범위를 탐색하고, 이들의 관계를 살펴봄으로써 VUS 통계량의 판별력 판단기준을 설정한다.

생태학의 통계적 서열화 방법 비교에 관한 연구 (A Comparison Study for Ordination Methods in Ecology)

  • 고현석;전명식;정형철
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.49-60
    • /
    • 2015
  • 군생태학에서 종, 장소 그리고 환경변수의 관계를 시각적으로 보기 위해 대응분석, 정준대응분석 등 다양한 서열화방법들을 사용한다. Ter Braak (1986), Jackson 등 (1991), Parmer (1993) 등은 고유값 및 거리그래프를 이용하여 서열화방법들을 비교하고 있는데, 이 방법들은 조사된 데이터에 근거하고 있기 때문에, 모집단과 행렬도의 관계를 보여주지는 못한다. 따라서, 본 논문에서는 행렬도에 모집단 정보의 표현정도를 측정하는 방법을 소개하고, 이를 활용하여 서열화방법들을 객관적으로 비교하였다. 비교결과, 정준대응분석은 대응분석과 유사한 정분류율을 유지하면서도 환경정보를 이차원 공간에 표현할 수 있는 장점을 지닌 분석임을 확인하였다.