사람들은 각자 원하는 조건에 부합한 식당과 카페를 찾곤 한다. 그러나 개인별로 원하는 조건들이 다양하고 그 조건들이 모두 부합하는 음식점을 찾기에는 적지 않은 시간과 노력이 필요한 일이다. 이 불편함을 해소하고자, 사용자가 원하는 조건을 입력하면 그 조건에 부합하는 몇 개의 음식점들을 추천해 주고, 지도상으로 위치를 표시해 주는 개인 맞춤형 음식점 추천 시스템을 개발하였다. 본 연구에서 제안하는 추천 시스템은 사용자가 입력한 우선순위에 따라 차별화된 음식점 추천을 받을 수 있으므로, 시간과 노력을 투자하지 않고도 자신이 원하는 음식점을 쉽게 찾을 수 있을 것으로 예상된다.
기존의 방송 추천 시스템은 사용자 프로파일 정보를 입력하고 이를 기반으로 콘텐츠 메타데이터와 일치되는 콘텐츠를 추천하는 형태로 연구가 진행되었다. 그러나 디지털 TV와 같이 사용자와의 상호동작이 많은 기기에서는 사용자들의 프로파일은 계속 변경이 일어나고 있고, 사용자의 의도와 프로파일을 정확히 파악하는 것이 추천의 정확도와 만족도를 높이는 것이다. 따라서 본 논문에서는 사용자의 리모컨 입력과 방송시청시간을 통해 실시간으로 사용자 프로파일 정보를 추출하고, 이 정보와 콘텐츠 메타데이터와 연관성을 파악하여 사용자에게 최적의 방송 콘텐츠를 추천한다. 또한 임베디드 시스템의 하드웨어 및 컴퓨팅 파워의 제약을 고려하여 네트워크 통신이나 상용 데이터베이스 시스템을 사용하지 않았고, 시청 시간에 따라 사용자가 원하는 콘텐츠의 장르가 다르다는 점을 고려하여 현재시간을 기준으로 콘텐츠를 추천하여 사용자 만족도를 증가시켰다.
인터넷 환경의 급속한 발전과 함께 이를 이용한 전자상거래가 빠르게 증가하고 있다. 증가하는 전자상거래 환경에서 고객에게 필요한 제품을 신속히 제공하고, 제품판매를 증가시킬 수 있는 새로운 전자상거래 시스템의 필요성이 점차 커지고 있다. 이러한 필요성에 의해서 최근에 추천시스템에 대한 많은 연구가 이루어지고 있다. 하지만 지금까지의 추천시스템은 고객의 구매데이터가 증가하면 고객에게 추천을 제공하는데 많은 시간이 소요되어 실시간 추천이 어렵다는 큰 단점을 가졌다. 따라서, 이 논문은 전자상거래 시스템의 경쟁력을 높이는 방안으로 협동적 필터링을 이용한 추천시스템을 연구하고, 성능을 개선하기 위해서 추천에 사용되는 데이터를 제품의 대표장르를 이용하여 줄임으로서 추천소요시간을 단축하여 실시간 추천이 가능한 개선된 추천시스템을 제안하고 실험하였다. 또한 개선된 추천시스템을 Enterprise JavaBeans로 구현함으로서 분산환경에서 사용할 수 있는 전자상거래시스템을 설계하여 경쟁력있는 전자상거래 시스템 환경을 제공하고자 한다.
트위터 이용자 수 증가로 인해, 유저의 타임라인에 하루 새롭게 기재되는 트윗 수가 급증하는 정보과다 현상이 중요한 이슈로 자리 잡은 지 오래다. 이에 본 논문은 이고-네트워크 정보를 바탕으로 학습 된 분류 시스템을 이용해 각각의 이고 유저마다 트윗 추천에 유리한 추천 방식을 예측하고, 이를 기반으로 선호할만한 트윗을 우선적으로 선별해주는 그래프 기반 트윗 추천 시스템을 제안한다. 실험을 통하여 단일한 추천 방식보다, 최고 11.5% 추천 정확도 성능이 향상함을 확인하였다.
본 논문에서는 컨텍스트 인식의 모바일 추천 시스템의 설계를 다룬다. 컨텍스트란 컴퓨터의 위치, 시각, 온도 등을 의미하며 컨텍스트 인식 컴퓨팅이란 이러한 정보들을 이용하는 컴퓨팅을 의미한다. 본 논문에서는 핸드폰이나 PDA와 같은 이동단말기에 GIS 센서가 부착되어 있다고 가정하고 이들 단말기를 통하여 위치정보를 수집한 후에 이를 이용하여 백화점과 같은 매장에서 고객에게 상품을 추천하여 주는 시스템을 설계하였다. 이동 단말기는 일정한 시간간격으로 자신의 위치를 서버로 전송하고 전송된 데이터는 데이터베이스에 저장된다. 저장된 데이터는 간단한 데이터 분석 알고리즘 통해서 단말기 사용자의 구매경향과 흥미도를 예측하여 이를 상품 추천 서버에 제공하고 상품 추천 서버는 이들을 바탕으로 사용자에게 최적의 상품을 추천하게 된다.
기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료
웹의 급격한 확산과 더불어 고객에게 맞춤화된 정보 제공의 필요성이 높아지고 있다. 또한 전자상거래 기업은 맞춤화와 개인화 서비스를 실현하기 위해서 웹 기반의 추천시스템에 많은 관심을 가지고 있다. 협업필터링(Collaborative filtering)은 개인화된 정보필터링 기법으로 추천시스템에서 가장 많이 사용되고 있다. 본 연구에서는 MovieLens 데이터 셋의 아이템속성을 고려하여 클러스터링 기반의 사례기반추론을 통한 협업필터링 추천시스템을 개발하고 기존의 방법과 제안된 모델의 성과를 비교 분석하였다.
기업이 제공하는 데이터와 서비스들은 분산된 환경에서 독립적으로 관리됨으로써 데이터 공유 및 통합에 있어서 어려움이 있다. 분산 이기종 간의 시스템 통합과 데이터 통합을 공유함으로써 편리함과 효율성을 증가시키고 이런 환경에서 가맹점의 특성에 맞는 지능적 추천을 할 수 있는 연구가 필요하다. 따라서 본 논문에서는 웹 서비스 기반의 분산 이기종 환경에서 B2B e-Marketplace 시스템에서 가맹정들의 사이트를 수정 없이 통합하는 시스템과 가맹점 특성에 맞는 상품 추천과 더 나아가 온톨로지를 적응하며 공급 수요량을 예측하는 추천 방법을 제안한다.
인터넷의 발전으로 전 세계적으로 다양한 인터넷 서비스들이 점차 확대되고 있으며, 특히 수익을 내는 방법으로서의 인터넷 전자상거래는 큰 비중을 차지하고 있다. 이에 수많은 사이트, 쇼핑몰은 상품과 고객들의 수많은 데이터를 데이터베이스 모듈로 관리하고 있다. 이렇게 고객에게 맞는 상품을 추천하기 위해 효율적으로 클러스터링 하는 방법이 요구된다. 이에 본 논문에서는 여러 클러스터링 방법 중에서 퍼지 이론을 기반으로 개선된 클러스터링 알고리즘을 이용하여 상품을 추천하고자 한다 이 방법은 클러스터의 개수가 한정되어 있는 기존의 방법에 클러스터의 유사도에 따른 유사성을 부여함으로써 더 세밀하고 정확한 클러스터링을 가능케 하여 이에 따른 개인의 성향에 맞게 개인화된 상품을 추천하는 시스템을 설계하고자 한다.
이 연구에서는 최근에 주목받고 있는 협업 필터링 기법을 중심으로 여러 가지 추천 기법을 살펴본 후 대출대상 도서의 추천 시스템을 구축하였다. 연관성 규칙 기반 기법, 협업 필터링 기법, 내용기반 필터링 기법을 응용하여 실제 대학도서관에서 특정 이용자가 대출할 만한 도서를 추천하는 시스템을 구현하고 각 기법의 추천 성능을 평가하였다. 실험 결과 대출대상 도서를 추천하는 데 있어 협업 필터링 기법과 내용기반 필터링 기법을 각각 따로 적용하는 것보다 두 기법을 함께 이용한 혼합형 필터링 추천 기법이 더욱 효과적인 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.