• 제목/요약/키워드: 정보 속성

검색결과 3,601건 처리시간 0.033초

구조실험 정보를 위한 데이터 저장소의 클래스와 객체의 속성구성 평가요소 (Evaluation Criteria of Attributes of Classes and Objects of Data Repositories for Structural Experiment Information)

  • 이창호
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.653-662
    • /
    • 2014
  • 구조실험을 위한 데이터 저장소는 구조실험에 관련된 실험정보를 구조공학자와 연구자들이 편리하게 저장하고 열람할 수 있도록 효율적인 구성을 가져야 한다. 데이터 저장소에 대한 평가는 데이터 저장소 자체적인 구성에 대한 평가와 데이터 저장소에 저장된 실제 정보의 구성에 대한 평가로 나눌 수 있다. 데이터 저장소의 자체적인 구성은 클래스로 나타낼 수 있고 데이터 저장소 내에 저장된 실제의 실험정보는 객체로 표현할 수 있는데 본 논문은 클래스와 객체가 가지고 있는 속성구성에 대한 평가요소를 제안한다. 클래스의 속성구성 평가요소로는 클래스내 속성수와 구체적인 값 또는 객체에 의해 구분한 속성의 종류별 수 등이 있는데 이러한 평가요소들을 이용하여 데이터 저장소가 정한 구성을 이해할 수 있다. 객체의 속성구성 평가요소로는 객체내 값있는 속성수 등이 있는데 데이터 저장소내의 실제 실험정보가 레벨별로 어떻게 저장되어 있는가를 파악할 수 있다.

다중 속성 기반 다단계 클러스터링을 이용한 이웃 선정 방법 (Neighbor Selection Methods Using Multi-Attribute Based Multi-Level Clustering)

  • 김택헌;양성봉
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.397-401
    • /
    • 2008
  • 추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 다중 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 검색하여 추출한다. 이 때, 다중 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객 집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보 및 아이템의 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.

  • PDF

다중 작업 학습의 단계적 특징을 활용한 한국어 속성 기반 감성 분석에서의 대상 추출 (Target extraction in Korean aspect-based sentiment analysis using stepwise feature of multi-task learning model)

  • 박호민;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.630-633
    • /
    • 2022
  • 속성기반 감성 분석은 텍스트 내에 존재하는 속성에 대해 세분화된 감성 분석을 수행하는 과제를 말한다. 세분화된 감성분석을 정확하게 수행하기 위해서는 텍스트에 존재하는 감성 표현과 그것이 수식하는 대상에 대한 정보가 반드시 필요하다. 그리고 순서대로 두 가지 정보는 이후 정보를 텍스트에서 추출하기 위해 중요한 단서가 된다. 따라서 본 논문에서는 KorBERT와 Bi-LSTM을 이용한 단계적 특징을 활용한 다중 작업 학습 모델을 사용하여 한국어 감성 분석 말뭉치의 감성 표현과 대상을 추출하는 작업을 수행하였다. 제안한 모델을 한국어 감성 분석 말뭉치로 학습 및 평가한 결과, 감성 표현 추출 작업의 출력을 추가적인 특성으로 전달하여 대상 추출 작업의 성능을 향상시킬 수 있음을 보였다.

  • PDF

kNN 알고리즘에서의 속성 가중치 자동계산 방법 (an Automatic Calculation Method of Feature Weights in k Nearest Neighbor Algorithms)

  • 이강일;이창환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.423-426
    • /
    • 2005
  • 기억기반학습의 일종인 최근접 이웃(k nearest neighbor) 알고리즘은 과거의 데이터들 중에서 새로운 개체와 유사한 데이터들을 이용해서 새로운 개체의 목적 값을 예측하는 것이다. 이 경우 속성의 가중치를 계산하는 방식은 kNN의 성능을 결정하는 중요한 요소가 된다. 본 논문에서는 기존의 다른 이론들과 달리 정보이론에서 사용되는 엔트로피 개념을 이용해서 속성의 가중치를 이론적이고, 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목적속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN의 성능을 향상시킨다. 마지막으로 이러한 방식의 성능을 다수의 실험을 통해 비교하였다.

  • PDF

DTN에서 효율적인 예측 기반 라우팅을 위한 노드 속성 분석 (Analysis of characteristic of nodes for efficient prediction based routing in DTN)

  • 도윤형;전일규;오영준;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.99-101
    • /
    • 2014
  • 불안정한 네트워크 환경 문제를 해결하기 위해 제안된 Delay Tolerant Network(DTN)에서는 안정적인 통신을 위해 저장 및 전달(store-carry-forward) 방식의 라우팅 프로토콜을 사용한다. 이중 노드의 속성 정보를 이용하여 추후 네트워크 상황을 예측하고 라우팅을 하는 예측 기반 라우팅 프로토콜은 GPS와 같은 위치 서비스의 발전으로 인해 DTN에 효과적으로 적용 될 수 있다. 이러한 예측 기반 라우팅 프로토콜에서는 중계 노드의 효율성이 네트워크의 상황에 따라 달라지기 때문에 위치 서비스를 통해 받는 노드의 속성 정보를 분석하는 연구가 제시되어야 한다. 본 논문은 노드의 속성 정보를 네트워크의 환경 정보에 따라 분석하여 효율적인 중계 노드를 선택하는 알고리즘을 제안한다. 제안하는 알고리즘은 노드의 속도, 방향, 위치 등의 속성 정보를 네트워크의 정보에 따라 가중치를 두어 다양한 네트워크 환경에서 더 효율적인 노드를 선택할 수 있도록 한다. 본 논문은 제안하는 알고리즘을 사용한 라우팅 프로토콜이 기존 라우팅 프로토콜에 비해 전송률, 지연시간, 오버헤드 측면에서 향상됨을 검증한다.

  • PDF

한국어 경제 도메인 텍스트 속성 기반 감성 분석을 위한 말뭉치 주석 요소 연구 (A study of Corpus Annotation for Aspect Based Sentiment Analysis of Korean financial texts)

  • 박서윤;장연지;강예지;강혜린;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.232-237
    • /
    • 2022
  • 본 논문에서는 미세 조정(fine-tuning) 및 비지도 학습 기법을 사용하여 경제 분야 텍스트인 금융 리포트에 대해 속성 기반 감성 분석(aspect-based sentiment analysis) 데이터셋을 반자동적으로 구축할 수 있는 방법론에 대한 연구를 수행하였다. 구축 시에는 속성기반 감성분석 주석 요소 중 극성, 속성 카테고리 정보를 부착하였으며, 미세조정과 비지도 학습 기법인 BERTopic을 통해 주석 요소를 자동적으로 부착하는 한편 이를 수동으로 검수하여 데이터셋의 완성도를 높이고자 하였다. 데이터셋에 대한 실험 결과, 극성 반자동 주석의 경우 기존에 구축된 데이터셋과 비슷한 수준의 성능을 보였다. 한편 정성적 분석을 통해 자동 구축을 동일하게 수행하였더라도 기술의 원리와 발달 정도에 따라 결과가 상이하게 달라짐을 관찰함으로써 경제 도메인의 ABSA 데이터셋 구축에 여전히 발전 여지가 있음을 확인할 수 있었다.

  • PDF

확장된 이차오차 척도를 이용한 개선된 메쉬 간략화 (Enhanced Mesh Simplification using Extended Quadric Error Metric)

  • 한태화;전준철
    • 정보처리학회논문지A
    • /
    • 제11A권5호
    • /
    • pp.365-372
    • /
    • 2004
  • 최근 복잡한 3차원 모델의 활용 범위가 확대됨에 따라 메쉬 모델의 간략화에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 기존의 모델 간략화 과정에서 널리 사용되는 모델의 정점에 대한 위치 정보에 근거한 기하 정보 기반의 간략화 방법에 모델의 속성 정보를 동시에 이용한 새로운 간략화 방법을 제시한다. 대부분의 3차원 메쉬 모델의 정보에는 기하 정보뿐만 아니라 모델의 색상, 질감, 그리고 곡률 등과 같은 속성 정보가 포함되며, 기존의 간략화 방법은 통상적으로 기하학적 정보나 속성 정보를 개별적으로 적용하여 메쉬를 간략화 한다. 본 논문에서 제시된 간략화 방법은 모델의 기하학 정보와 속성 정보를 동시에 적용하여 메쉬 간략화를 수행하였다. 특히 본 논문에서는 메쉬의 간략화에 상대적으로 수행 시간과 충실도에 장점을 지닌 이차 오차 척도(quadric error metric)를 확장하여 일반적인 기하학적 정보에 속성 정보를 추가하였다. 따라서, 제안된 메쉬 간략화 방법은 기하 정보기반으로 간략화를 수행하는 이차 오차 척도에 속성 정보가 추가된 간단한 이차식으로 확장하여 표현할 수 있다. 이는 기하 정보만을 이용하였을 때의 이차식의 공간 차수를 m=0으로 두었을 때 추가된 속성 정보의 특성에 따라 차수를 확장 함(m>0)으로서 계산이 가능하다. 실험 결과, 제안된 방법에 의한 모델의 간략화 결과를 원 모델과 비교 시 기하 정보만을 이용한 기존의 간략화 방법의 수행 결과에 비하여 모델의 전체적인 외형 등 특성 정보의 충실도가 높다는 것을 입증할 수 있었다.

협동적 필터링을 위한 속성기반 다단계 클러스터링 (Attribute-based Multi-level Clustering for Collaborative Filtering)

  • 김택헌;양성봉
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.525-528
    • /
    • 2007
  • 추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 추출한다. 이 때, 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.

STM(Short-term Memorable) Information의 속성 및 정보표현 (Attributes and Expression of STM(Short-term Memorable) Information)

  • 한지애;류시천
    • 한국콘텐츠학회논문지
    • /
    • 제10권9호
    • /
    • pp.201-211
    • /
    • 2010
  • 본 연구의 목적은 정보 디자인 유형 중에서 상대적으로 "노출 시간이 짧지만 정보 전달력이 강한 정보" 즉, STM 정보(Short-term Memorable Information)” 에 대한 사용자의 인지력을 높이기 위한 방법을 모색하는 것이다. 연구를 통해 STM 정보의 디자인 속성을 고찰하고 거시적 관점에서 디자인적 표현 방법을 다음과 같이 제안하였다. STM 정보는 기능변수의 조작, 방법, 사건, 사용 예라는 네 가지 시각화 속성을 기준으로 시각적 재현 측면에서 '이해도(Understandable)', '접근성(Accessibility)' 속성이 충족되어야 한다. 또한 사용자 조작 측면에서는 '무오류(Errorless)', '적정성(Timeliness)' 속성이 충족되어야 한다. 각 측면에서의 거시적 표현 방법으로써, 시각적 재현 측면에서 "속성이론", "인식모형", "정보 주도성(Proactivity)의 최대화", "잉여 정보의 최소화", "이중부호의 사용"을 제안했으며, 사용자 조작측면에서 "맥락효과", 일차적 독특성을 중심으로 한 "기억부호화", "정보 주사(Scanning)"의 두 가지 방법을 제안했다. 사용자 설문 인터뷰를 통해서 앞서 제안한 8가지 표현 방법의 효율성에 관한 확증 및 STM 정보에 대한 사용자 인지패턴을 발견하였다. 본 연구에서의 주요 발견점을 토대로 향후에는 노출시간별 효과적인 정보 표현 및 그에 따른 응용 방법에 관한 연구가 진행될 필요가 있다.

가상예제를 이용한 수치 및 범주 속성 데이터의 분류 성능 향상 (Improving Classification Accuracy for Numerical and Nominal Data using Virtual Examples)

  • 이유정;강재호;강병호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.183-188
    • /
    • 2006
  • 본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주속성 및 수치속성 데이터에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이터를 대상으로 한 반면 본 연구에서는 범주속성 데이터에 대해서도 가상예제를 적용하여 효과를 확인하였다. 그리고 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 한 기존 연구들과는 달리 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이터와 수치 속성을 포함한 데이터를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.

  • PDF