• Title/Summary/Keyword: 정보 검색 패턴

Search Result 486, Processing Time 0.035 seconds

Mean Shift Clustering을 이용한 영상 검색결과 개선

  • Kwon, Kyung-Su;Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.138-143
    • /
    • 2009
  • 본 논문에서는 감성 공간에서 mean shift clustering과 user feedback을 이용하여 영상 검색 결과를 개선하기 위한 시스템을 제안한다. 제안된 시스템은 사용자 인터페이스, 감성 공간 변환, 검색결과 순위 재지정(re-ranking)으로 구성된다. 사용자 인터페이스는 텍스트 형태의 질의 입력과 감성 어휘 선택에 따른 user feedback에 의해 개선된 검색결과를 보인다. 사용된 감성 어휘는 고바야시가 정의한 romantic, natural, casual, elegant, chic, classic, dandy, modern 등의 8개 어휘를 사용한다. 감성 공간 변환 단계에서는 입력된 질의에 따라 웹 영상 검색 엔진(Yahoo)에 의해 검색된 결과 영상들에 대해 컬러와 패턴정보의 특징을 추출하고, 이를 입력으로 하는 8개의 각 감성별 분류기에 의해 각 영상은 8차원 감성 공간으로의 특징 벡터로 변환된다. 이때 감성 공간으로 변환된 특징 벡터들은 mean shift clustering을 통해 군집화 되고, 그 결과로써 대표 클러스터를 찾게 된다. 검색결과 순위 재지정 단계에서는 user feedback 유무에 따라 대표 클러스터의 평균 벡터와 user feedback에 의해 생성된 사용자 감성 벡터에 의해 검색 결과를 개선할 수 있다. 이때 각 기준에 따라 유사도가 결정되고 검색결과 순위가 재지정 된다 제안된 시스템의 성능을 검증하기 위해 7개의 질의의 각 400장, 총 2,800장에 대한 Yahoo 검색 결과와 제안된 시스템을 개선된 검색 결과를 비교하였다.

  • PDF

Compound Noun Indexing Experiments in Korean Information Retrieval (한국어 정보검색에서 복합명사 색인 실험)

  • Kang, Byung-Ju;Choi, Key-Sun;Yoon, Jun-Tae
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.130-136
    • /
    • 1998
  • 한국어 정보검색에서 복합명사의 불규칙한 표기 형태로 인하여 발생하는 색인과 질의의 불일치 문제는 단순명사 단위로 색인하고 질의함으로써 해결할 수 있지만 원래의 복합명사가 가지고 있던 정보를 상실함으로써 정확도의 하락이 예상된다. 따라서 보다 정교한 문서검색을 위해서는 복합명사를 색인으로 사용하는 것이 필요하다. 본 논문에서는 단순한 패턴을 이용한 복합명사 색인 방법으로부터 정교한 명사구 구문분석을 통한 복합명사 색인 방법까지 그 동안 연구되었던 대표적인 복합명사 색인 방법을 실험을 통하여 비교 평가하여 복합명사 색인의 검색성능에 대한 효과성을 검증한다.

  • PDF

A Study on the Usage Patterns of Medicine Information Through Web Log Analysis (웹로그 분석을 통한 의약품 정보 검색 주제별 이용 패턴에 관한 연구)

  • Cho Kyoung-Won;Woo Young-Woon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.269-274
    • /
    • 2005
  • There are lots of medicine information on the internet recently. But there is no specific research result about search patterns or acquisition methods of medicine information on web pages for lay people until now. In this paper, 1 analyzed the web log files of a certain company providing medicine information using the WiseLog tool. I analyzed three kinds of statistic result of the web log files such as the status of web page usage by types of users, the status of web page menu usage, and the status of search menu usage. As results, I proposed methods of supplement and improvement for companies providing medicine information on the internet.

  • PDF

A Similarity Computation Algorithm Based on the Pitch and Rhythm of Music Melody (선율의 음높이와 리듬 정보를 이용한 음악의 유사도 계산 알고리즘)

  • Mo, Jong-Sik;Kim, So-Young;Ku, Kyong-I;Han, Chang-Ho;Kim, Yoo-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3762-3774
    • /
    • 2000
  • The advances of computer hardware and information processing technologies raise the needs of multimedia information retrieval systems. Up to date. multimedia information systems have been developed for text information and image information. Nowadays. the multimedia information systems for video and audio information. especially for musical information have been grown up more and more. In recent music information retrieval systems. not only the information retrieval based on meta-information such like composer and title but also the content-based information retrieval is supported. The content-based information retrieval in music information retrieval systems utilize the similarity value between the user query and the music information stored in music database. In tbis paper. hence. we developed a similarity computation algorithm in which the pitches and lengths of each corresponding pair of notes are used as the fundamental factors for similarity computation between musical information. We also make an experiment of the proposed algorithm to validate its appropriateness. From the experimental results. the proposed similarity computation algorithm is shown to be able to correctly check whether two music files are analogous to each other or not based on melodies.

  • PDF

A Search for Analogous Patients by Abstracting the Results of Arrhythmia Classification (부정맥 분류 결과의 축약에 기반한 유사환자 검색기)

  • Park, Juyoung;Kang, Kyungtae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.464-469
    • /
    • 2015
  • Long-term electrocardiogram data can be acquired by linking a Holter monitor to a mobile phone. However, most systems are designed to detect arrhythmia through heartbeat classification, and not just for supporting clinical decisions. In this paper, we propose an Abstracting algorithm, and introduce an analogous pateint search system using this algorithm. An analogous patient searcher summarizes each patient's typical pattern using the results of heartbeat, which can greatly simplify clinical activity. It helps to find patients with similar arrhythmia patterns, which can help in contributing to diagnostic clues. We have simulated these processes on data from the MIT-BIH arrhythmia database. As a result, the Abstracting algorithm provided a typical pattern to assist in reaching rapid clinical decisions for 64% of the patients. On an average, typical patterns and results generated by the abstracting algorithm summarized the results of heartbeat classification by 98.01%.

Knowledge-based Semantic Meta-Search Engine (지식기반 의미 메타 검색엔진)

  • Lee, In-K.;Son, Seo-H.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.737-744
    • /
    • 2004
  • Retrieving relevant information well corresponding to the user`s request from web is a crucial task of search engines. However, most of conventional search engines based on pattern matching schemes to queries have a limitation that is not easy to provide results corresponding to the user`s request due to the uncertainty of queries. To overcome the limitation in this paper, we propose a framework for knowledge-based semantic meta-search engines with the following five processes: (i) Query formation, (ii) Query expansion, (iii) Searching, (iv) Ranking recreation, and (v) Knowledge base. From simulation results on english-based web documents, we can see that the Proposed knowledge-based semantic meta-search engine provides more correct and better searching results than those obtained by using the Google.

Automatic Building Ontology Techniques for RESTful Web Services (RESTful 웹 서비스를 위한 온톨로지 자동 구축 기법)

  • Lee, Yong-Ju
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1415-1418
    • /
    • 2011
  • 최근 웹상에 이용 가능한 RESTful 웹 서비스들의 수가 급격하게 증가됨에 따라 사용자들이 적합한 웹 서비스를 찾는 것은 매우 중요한 이슈로 대두되었다. 그러나 기존의 키워드 기반 검색 방법은 나쁜 재현율과 나쁜 정확률 때문에 문제가 많다. 본 논문에서는 매개변수 클러스터링 기법에 패턴 분석 기법을 추가한 하나의 새로운 시맨틱 온톨로지 구축 방법을 제안한다. 이를 통해 온톨로지를 자동 구축하여 시맨틱 정보의 주석처리 부담을 줄일 수 있고, 보다 효율적인 웹 서비스 검색을 지원한다.

A Study of Automatic Ontology Building by Web Information Extraction and Natural Language Processing (웹 문서 정보추출과 자연어처리를 통한 온톨로지 자동구축에 관한 연구)

  • Kim, Myung-Gwan;Lee, Young-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2009
  • The proliferation of the Internet grows, according to electronic documents, along with increasing importance of technology in information retrieval. This research is possible to build a more efficient and accurate knowledge-base with unstructured text documents from the Web using to extract knowledge of the core meaning of LGG (Local Grammar Graph). We have built a ontology based on OWL(Web Ontology Language) using the areas of particular stocks up/down patterns created by the extraction and grammar patterns. It is possible for the user can search for meaning and quality of information about the user wants.

  • PDF

Buying Point Recommendation for Internet Shopping Malls Using Time Series Patterns (시계열 패턴을 이용한 인터넷 쇼핑몰에서의 구매시점 추천)

  • Jang, Eun-Sill;Lee, Yong-Kyu
    • Proceedings of the CALSEC Conference
    • /
    • 2005.11a
    • /
    • pp.147-153
    • /
    • 2005
  • When a customer wants to buy an item at the Internet shopping mall, one of the difficulties is to decide when to buy the item because its price changes over time. If the shopping mall can be able to recommend appropriate buying points, it will be greatly helpful for the customer. Therefore, in this presentation, we propose a method to recommend buying points based on the time series analysis using a database that contains past prices data of items. The procedure to provide buying points for an item is as follows. First, we search past time series patterns from the database using normalized similarity, which are similar to the current time series pattern of the item. Second, we analyze the retrieved past patterns and predict the future price pattern of the item. Third, using the future price pattern, we recommend when to buy the item.

  • PDF