• Title/Summary/Keyword: 정보화 사회

Search Result 4,302, Processing Time 0.02 seconds

New Platform of Orientalism-Based Design Education (동양성 기반의 디자인 교육의 새로운 플랫폼)

  • Choi, Kyung Ran
    • Korea Science and Art Forum
    • /
    • v.20
    • /
    • pp.455-464
    • /
    • 2015
  • As the recognition toward the Korean design education development to nurture creative talents for the future society has been expanded recently, various supports and promoting strategies are being suggested. This study suggests the orientalism-based new design education platform in design education field to nurture creative talents. To have the competitiveness of creative talent nurturing, the system and education programs to rear creative talents are required. The purpose of this study is to suggest the new platform for the change of direction in design education and search for the methods in detail. The research process can be described as following: First, this study stated about the research background and its boundary. Based on the literature review and the condition of the crisis of Korean design education (Korean Industrial Statistic Investigation), it described the current condition and the characteristics. Second, this study stated about the education which will be disappeared in the information society, the change of direction in design education, and the new platform. In the current study, the change toward the strategies that give priority to the growth strategies on the knowledge-based industry was stated. Third, this study stated about that the future design education should be centered on the orientalism-based creativity in the trend changing to the six conditions for the future talents and the beliefs and values toward Asia, and what methods should be sought to achieve this trend. It suggested focusing on the aim for the direction for College education and its program curriculums as the solutions in detail. Fourth, based on the contents stated earlier in this study, it stated synthetically the direction of practice through the network of the design cluster and derived the implications. In conclusion, based on the recent orientalism-based mind, this study suggested the ways to find the identity of Korean design education itself and have the competitiveness in design education programs. The ways to secure them is to come from the integrated system innovation of the network. By actively applying the design clusters, colleges and universities, designers, studios, government policy organizations, design institutes, corporates, media, and fairs, this study suggests the sustainable education system and the practical methods.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.