• Title/Summary/Keyword: 정보학모델

Search Result 2,831, Processing Time 0.027 seconds

Segmentation and Compression Techniques for 3D Animation Models (삼차원 애니메이션 모델의 분할 및 부호화 방법)

  • 안정환;임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.353-356
    • /
    • 2000
  • 최근 복잡한 실제 사물을 가상 공간상에 표현하기 위해 삼차원 모델을 많이 이용하고 있다. 기존의 삼차원 데이터 처리는 주로 정지 모델에 대해 기하학 정보와 위상학 정보를 표현하거나 다중 해상도(Level of Details, LOD)로 나타내는데 역점을 두었다. 그러나 네트웍을 통한 가상 공간에서 삼차원 애니메이션에 대한 응용이 점차 늘어남에 따라 이러한 데이터를 효율적으로 압축하여 전송하거나 저장할 필요가 생겼다 본 논문에서는 삼차원 애니메이션 모델의 공간적 또는 시간적 상관 관계를 이용하여 삼차원 모델 정보를 부호화하는 방법을 제안한다. 먼저 주어진 모델의 움직임을 분석하고 이를 (r,θ,ø)의 구 좌표계로 변환한 후 (θ,ø)의 분포에 따라 모델을 분할(Segmentation)한다. 그리고 움직임 벡터는 Affine 변환을 이용하여 삼차원 공간에서의 움직임을 정의한다. Key프레임에 해당하는 정지 모델의 기하학 정보와 위상학 정보를 압축하고, LOD 기술을 적용하여 손실 혹은 무손실로 부호화하여 전송한다. 또한 Key프레임 사이의 화면에서는 선형 또는 비선형 보간법으로 각 분할 부분을 복원하고, 이를 조합하여 전체적인 삼차원 모델을 복원한다.

  • PDF

100 K-Poison: Poisonous Texts Resistance Test Dataset For Korean Generative Models (100 K-Poison: 한국어 생성 모델을 위한 독성 텍스트 저항력 검증 데이터셋 )

  • Li Fei;Yejee Kang;Seoyoon Park;Yeonji Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.149-154
    • /
    • 2023
  • 본고는 한국어 생성 모델의 독성 텍스트 저항 능력을 검증하기 위해 'CVALUE' 데이터셋에서 추출한 고난도 독성 질문-대답 100쌍을 바탕으로 한국어 생성 모델을 위한 '100 K-Poison' 데이터셋을 시범적으로 구축했다. 이 데이터셋을 토대로 4가지 대표적인 한국어 생성 모델 'ZeroShot TextClassifcation'과 'Text Generation7 실험을 진행함으로써 현재 한국어 생성 모델의 독성 텍스트 식별 및 응답 능력을 종합적으로 고찰했고, 모델 간의 독성 텍스트 저항력 격차 현상을 분석했으며, 앞으로 한국어 생성 모델의 독성 텍스트 식별 및 웅대 성능을 한층 더 강화하기 위한 '이독공독(以毒攻毒)' 학습 전략을 새로 제안하였다.

  • PDF

Evaluation of Language Model Robustness Using Implicit Unethical Data (암시적 비윤리 데이터를 활용한 언어 모델의 강건성 평가)

  • Yujin Kim;Gayeon Jung;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.633-637
    • /
    • 2023
  • 암시적 비윤리 표현은 명시적 비윤리 표현과 달리 학습 데이터 선별이 어려울 뿐만 아니라 추가 생산 패턴 예측이 까다롭다. 고로 암시적 비윤리 표현에 대한 언어 모델의 감지 능력을 기르기 위해서는 모델의 취약성을 발견하는 연구가 반드시 선행되어야 한다. 본 논문에서는 암시적 비윤리 표현에 대한 표기 변경과 긍정 요소 삽입이라는 두 가지 변형을 통해 모델의 예측 변화를 유도하였다. 그 결과 모델이 야민정음과 외계어를 사용한 언어 변형에 취약하다는 사실을 발견하였다. 이에 더해 이모티콘이 텍스트와 함께 사용되는 경우 텍스트 자체보다 이모티콘의 효과가 더 크다는 사실을 밝혀내었다.

  • PDF

Reverse Engineering of Embedded Software based on Model-Driven Development (모델 기반 개발방법에 기반한 임베디드 소프트웨어의 역공학)

  • Na, DongJin;Lee, Yongsoon;Kim, Heejin;Ryu, Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.782-785
    • /
    • 2007
  • 모델 기반 개발방법은 개발자가 추상화된 모델만을 설계하는 것만으로도 소프트웨어를 개발할 수 있도록 하는 방법이다. 현재까지의 모델 기반 개발방법론은 모델에서 코드를 변환하는 것은 다루고 있지만, 반대로 코드에서 모델로의 변환은 고려하고 있지 않다. 본 논문에서는 모델이 아닌 기존에 작성된 C 언어 코드를 모델로 변환하는 역공학 기법을 제안한다. 이러한 역공학 기법을 사용하면, 새로운 모델을 작성할 때 기존의 코드로부터 모델을 얻어내 적용할 수 있다. 또한, 모델을 작성하고 작성된 모델을 통해 생성된 최종코드를 수정하였을 경우 역공학을 통해 모델과 수정한 코드를 일관성 있게 유지할 수 있다. 이를 지원하기 위해 C 언어를 UML 로 변환하는 방법 및 변환된 모델의 효율적인 구성을 위한 모델 재구성 방법을 제안한다.

New Information Behavior Model: Life Paradigm Based (생명 패러다임 정보행태모델)

  • Lee, Hyuk-Jin
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.27 no.1
    • /
    • pp.217-235
    • /
    • 2016
  • Humanities academia and scientific community have been fused together in 21st centurty and it creates new theories and models. Among them, the embodied cognition theory has received attention in several related fields. This study reviews the major metatheories in information user behavior with their limitations. Then, "Life paradigm information behavior model" is suggested as a new theory, which communsurates with new era's request, introducing the embodied cognition theory and the entropy concept. By overcoming the limitations of individual approach to the information retrieval and user behaviors, we expect the discourse of the new integrated information retrieval paradigm.

Comparative Study of Keyword Extraction Models in Biomedical Domain (생의학 분야 키워드 추출 모델에 대한 비교 연구)

  • Donghee Lee;Soonchan Kwon;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.77-84
    • /
    • 2023
  • Given the growing volume of biomedical papers, the ability to efficiently extract keywords has become crucial for accessing and responding to important information in the literature. In this study, we conduct a comprehensive evaluation of different unsupervised learning-based models and BERT-based models for keyword extraction in the biomedical field. Our experimental findings reveal that the BioBERT model, trained on biomedical-specific data, achieves the highest performance. This study offers precise and dependable insights to guide forthcoming research in biomedical keyword extraction. By establishing a well-suited experimental framework and conducting thorough comparisons and analyses of diverse models, we have furnished essential information. Furthermore, we anticipate extending our contributions to other domains by providing comparative experiments and practical guidelines for effective keyword extraction.

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

Domain-Adaptive Pre-training for Korean Document Summarization (도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약)

  • Hyungkuk Jang;Hyuncheol, Jang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.

Domain adaptation of Korean coreference resolution using continual learning (Continual learning을 이용한 한국어 상호참조해결의 도메인 적응)

  • Yohan Choi;Kyengbin Jo;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

강화된 키 교환 프로토콜의 안전성 모델의 관한 연구

  • Byun, Jin-Wook
    • Review of KIISC
    • /
    • v.20 no.2
    • /
    • pp.78-84
    • /
    • 2010
  • 키 교환 프로토콜은 대표적인 암호화 프로토콜로서 그 안전성 모델에 관한 연구가 꾸준히 진행되어 왔다. 최근에는 기존의 안전성 모델을 강화시키고 강화된 모델을 바탕으로 키 교환 프로토콜 설계가 이루어졌다. 본 논문에서는 강화된 새로운 안전성 모델 결과들을 정리해서 살펴보고 향후 연구 방향에 대해서 논한다.