• Title/Summary/Keyword: 정보포털

Search Result 743, Processing Time 0.021 seconds

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.