기억기반학습의 일종인 최근접 이웃(k nearest neighbor) 알고리즘은 과거의 데이터들 중에서 새로운 개체와 유사한 데이터들을 이용해서 새로운 개체의 목적 값을 예측하는 것이다. 이 경우 속성의 가중치를 계산하는 방식은 kNN의 성능을 결정하는 중요한 요소가 된다. 본 논문에서는 기존의 다른 이론들과 달리 정보이론에서 사용되는 엔트로피 개념을 이용해서 속성의 가중치를 이론적이고, 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목적속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN의 성능을 향상시킨다. 마지막으로 이러한 방식의 성능을 다수의 실험을 통해 비교하였다.
K-NN (k-Nearest Neighbors), which is a well-known instance-based learning algorithm, simply stores entire training patterns in memory, and uses a distance function to classify a test pattern. K-NN is proven to show satisfactory performance, but it is notorious formemory usage and lengthy computation. Various studies have been found in the literature in order to minimize memory usage and computation time, and NGE (Nested Generalized Exemplar) theory is one of them. In this paper, we propose RPA (Recursive Partition Averaging) and IRPA (Incremental RPA) which is an incremental version of RPA. RPA partitions the entire pattern space recursively, and generates representatives from each partition. Also, due to the fact that RPA is prone to produce excessive number of partitions as the number of features in a pattern increases, we present IRPA which reduces the number of representative patterns by processing the training set in an incremental manner. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.
Journal of The Korean Association of Information Education
/
v.23
no.6
/
pp.639-653
/
2019
The purpose of this study is to design an instructional framework and cognitive learning environment for AI education based on computational thinking in order to ground the theoretical rationale for AI education. Based on the literature review, the learning model is proposed to select the algorithms and problem-solving models through the abstraction process at the stage of data collection and discovery. Meanwhile, the instructional model of AI education through computational thinking is suggested to enhance the problem-solving ability using the AI by performing the processes of problem-solving and prediction based on the stages of automating and evaluating the selected algorithms. By analyzing the research related to the cognitive learning environment for AI education, the instructional framework was composed mainly of abstraction which is the core thinking process of computational thinking through the transition from the stage of the agency to modeling. The instructional framework of AI education and the process of constructing the cognitive learning environment presented in this study are characterized in that they are based on computational thinking, and those are expected to be the basis of further research for the instructional design of AI education.
Journal of The Korean Association For Science Education
/
v.29
no.8
/
pp.812-823
/
2009
The purpose of this study is to search effective assessments methods by using the Fusion model of Cognitive diagnosis theory. Attributes are skills or cognitive processes that are required to perform correctly on a particular item. After test items were developed, item's attributes were decided and Q-matrix about item's attributes was made. After testing, the result was analyzed according to gender and achievement level. The results of the analysis showed that students mastered 'Interpreting data' best, and 'synthesizing' worst among the five attributes. Female students showed higher ability than male students in 'recalling.' Students of high achievement level mastered more scientific attributes than students of low achievement level. Conventional assessments only provided a single summary score but Cognitive diagnosis modeling provided useful information by estimating individual knowledge states by assessing whether an examinee has mastered specific attributes measured by the science test. The skill profiles can offer a skill level of strong, weak, or mixed for each student for each skill. Therefore, the skill profiles will provide useful diagnostic information in addition to single overall scores.
지난 10년 동안 구미에서는 부모-아동 관계 영역에 혁신을 가져왔다. 특히 부모-아동 애착이론의 획기적인 변화로 가족 중심 출산 경험을 강조하고 있다. 과거에는 남편이 아내의 출산에 참여하던 것이 타부시되어 왔지만 애착의 개념이 대두되면서 남편도 출산에 함께 참여하도록 고려하여 임신에서부터 부부가 함께 이 과업을 완수하도록 모든 환경을 변화시키고 있다. 애착이론은 다양하여 정신분석이론, 학습이론, 인지발달이론과 동물 행동학적 측면에서 이해되고 있다. 다양한 이론적 배경과 개념들을 가지고 아버지-아동의 애착 및 유대관계에 대한 연구가 지난 10여년 이상 되어오고 있다. 가장 관심의 촛점이 되어 연구 되어온 것으로는 애착형성을 위해 중요하다고 하는 민감한 시기(Critical period)를 중심으로 애착의 특성인 시각, 청각, 촉각, 상호호혜적 관계, 긍정적 애정을 바탕으로 연구되어졌다. 이 연구는 부아 애착(Paternal Infant Attachment)의 연구를 연구방법, 측정도구 및 방법상문제와 변수들을 중심으로 재정리하여, 이 분야에 있어서 앞으로의 연구 방향을 살펴보았다. 17편의 연구들을 각각 년도, 표본수, 방법 및 측정, 결과 및 비고난을 비교 분석하여 도표를 작성하였다. 이론적 기틀과 문헌고찰에 근거하여 다음과 같은 적용과 제언을 한다. 1. 출산전 아버지의 특성에 대한 사정이 필요하다. 2. 연구자가 집단간 비교를 용이하게 하기 위해 연구전에 표본의 특성을 정확히 기술해야 한다. 3. 부모와 아버지의 과거력에 대한 상세한 정보수집이 강조되어야 한다. 4. 앞으로의 연구는 이론적 모델에 근거하여 이루어져, 대중교육 뿐 아니라 정책 결정에 기여해야 한다. 5. 연구결과 평가와 해석을 위해 정확한 이론적 근거가 필요로 된다. 6. 간호연구는 부적절한 부아 애착 형성에 있어서 아버지의 특성을 확인하고 부아유대와 애착 증진의 요소를 파악해야한다. 7. 부아 유대에 대한 위협요소 확인을 위한 도구개발과 그들에 대한 효과적인 간호전략이 필요 된다. 8. 가족에 있어서 모든 부모행위가 하나의 독립변수로서 연구되어야 하고 부아유대 증진에 관한 연구가 시도되어야겠다. 오늘날 부모들은 임신기간동안 많은 정보에 접하기를 원한다. 산전, 산후의 교육과 지식은 긍정적인 부아 관계를 증진시키고, 이것은 아동의 발달에 크게 기여할 수 있다. 긍정적으로 이러한 관계는 가족단위를 강하게 통합시키게 되므로 건강관리자(Health care workers)들은 애착에 대해 높은 관심을 갖어야 하겠다.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.119-126
/
2021
Due to the prolonged COVID-19, distance lectures are expected to continue for a considerable period of time. Research on factors affecting distance lecture quality and learner satisfaction is essential. The purpose of this study is to examine the relationship between distance lecture quality (system quality, information quality, service quality, interaction quality), self-efficacy, and learner satisfaction, and to suggest theoretical and practical implications for the effective operation of distance lectures. A survey was conducted for university students taking distance lectures, and 197 questionnaires were used for empirical analysis. The collected data were analyzed by SPSS 25.0 and AMOS 21.0. As a result; First, distance lecture quality (system quality, information quality, service quality, interaction quality) was found to have a positive effect on self-efficacy. Second, distance lecture quality (system quality, information quality, service quality, interaction quality) was found to have a positive effect on learner satisfaction. Third, self-efficacy was found to have a positive effect on learner satisfaction. Based on the analysis results, the implications and limitations of this study are presented.
Theoretical statistics is a calculus based course. However, there are limitations to learn theoretical statistics when students do not know enough calculus techniques. Mathematical softwares (computer algebra systems) that enable calculus manipulations help students understand statistical concepts, by avoiding the difficulties of calculus. In this paper, we introduce mathematical software such as Maxima and Wolfram Alpha. To foster statistical concepts in theoretical statistics education, we present three examples that consist of mathematical derivations using wxMaxima and statistical simulations using R.
현재 국내에서 웹을 기반으로 한 e-learning 콘텐츠는 많이 개발되고 있으나 이들 대부분이 매뉴얼 식으로 제작되어 멀티미디어 형식만 빌려 텍스트 형태로만 구성하는 방식이 주를 이루고 있는 실정이다. 따라서 본 논문에서는 SMIL을 기반으로하여 멀티미디어 아날로그와 디지털 자료를 융합할 수 있는 핵심 기술을 제안하며, 이를 웹 상에서 창의적이고, 자기주도적으로 개인차에 따라 학습 속도를 조절할 수 있는 프로젝트 학습기법을 국내 교육환경에 맞게 교수-학습 이론을 적용하여 설계 구현하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.163-165
/
2001
최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.796-798
/
2005
본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.