최근 교육 분야에서 다양한 인공지능 기술을 활용한 연구와 개발이 이뤄지고 있다. 인공지능을 활용한 교육 중 특히 대화형 에이전트는 시간과 공간의 제약을 받지 않고 음성인식, 번역과 같은 다양한 인공지능 기술과 결합해 더 효과적인 언어 학습을 가능하게 한다. 본 논문은 상용화된 교육용 플랫폼 중 이용자 수가 많고 영어 학습을 위한 대화형 에이전트가 활용된 플랫폼에 대한 동향 분석을 진행하였다. 동향 분석을 통해 현재 상용화된 교육용 플랫폼의 대화형 에이전트는 여러 한계점과 문제점이 존재했다. 구체적인 문제점과 한계점 분석을 위해 사전 학습된 최신 대용량 대화 모델과 비교 실험을 진행하였고, 실험 방법으로 대화형 에이전트의 대답이 사람과 비슷한지를 평가하는 Sensibleness and Specificity Average (SSA) 휴먼 평가를 진행하였다. 실험 내용을 바탕으로, 효과적인 학습을 위해 개선방안으로 대용량 파라미터로 학습된 대화 모델, 교육 데이터, 정보 검색 기능의 필요성을 제안했다.
본 논문에서는 특정한 공간에서 학습하는 학습자들의 학습환경을 최적화하여 학습능률을 향상시키기 위한 방안으로서 유비쿼터스 센서네트워크 기술을 활용한 학습지원시스템을 구축한다. 이를 위해 특정 공간에 실내외에 부착된 센서노드를 활용하여 온도, 습도, 조도 등의 정보를 수집하고, 이들 정보와 학습자들로부터 파악한 정보를 분석하여 최적의 학습환경을 조성하기 시스템에 대해 연구한다.
전통적인 웹기반의 학습시스템은 다양한 학습콘텐츠를 운영한다. 그러나 학습자가 자신에게 적절한 학습콘텐츠를 선택하는 것은 쉬운 일이 아니다. 본 논문에서는 학습자가 학습을 계획할 때 학습이력 및 다양한 학습정보를 담고 있는 학습자 프로파일을 기초로 하여, 학습자에게 가장 적합한 선호도와 피드백을 제공할 수 있는 학습콘텐츠 제공 방법을 제안하였다. 즉 학습자의 프로파일을 분석하여 학습자에게 제공할 긍정적 피드백과 평가를 결정한다. 또한 학습자가 틀린 부분에 대한 지식을 스스로 학습할 수 있도록 학습콘텐츠를 적응적으로 제공한다. 그 결과, 학습자 프로파일 분석을 통해 긍정적인 피드백을 바탕으로 자신이 오류를 배울 수 있도록 하여, 학습의 적용 결과가 가장 잘 나오는 형태로 학습 콘텐츠를 적응적으로 제공해 주는 기법을 적용하였다. 본 논문에서 구현한 지능형 학습시스템은 실제 학습자에게 적용하였으며 사용한 학습자들을 대상으로 학습 만족도를 설문하여 그 결과를 분석하였다.
본 연구의 목적은 소프트웨어교육에 나타나는 에듀테인먼트 특성을 Q방법론을 활용하여 학습자의 주관성에 따라 유형화하고 각각의 특성을 알아보는 데 있다. 연구를 통해 '구현-지향형', '지적재미-지향형', '관계-지향형' 세 가지로 유형화하였으며 각 유형별 특성을 분석하였다. 구현-지향형의 학습자는 본인이 생각한 것을 직접 구현해 보는 것에서 에듀테인먼트적 긍정성을 보였으며, 지적재미-지향형의 학습자는 주어진 개별적 문제 상황을 지적으로 해결하는 것에서 에듀테인먼트적으로 가장 긍정적이었고, 관계-지향형 학습자의 경우에는 본인에 대해 다른 사람의 관심을 유발하는 수업에 대해서 에듀테인먼트적인 긍정성을 보였다. 이 같은 결과는 소프트웨어교육을 하는 데 있어서 학습자의 주관성을 고려한 에듀테인먼트 콘텐츠 개발 및 교수-학습 방법을 적용하여 학습자에게 최적의 교육 환경을 제공하는 데 중요한 지침을 제공하고, 또한 소프트웨어교육 및 에듀테인먼트 연구의 이론적 확장에 기여할 것으로 기대한다.
이 연구에서는 스마트 기기를 활용한 소집단 과학 학습 과정에서 사전 성취 수준에 따른 언어적 상호작용을 분석하였다. 서울시의 한 남녀 공학 고등학교에서 사전 성취 수준 측면에서 이질적으로 구성된 4개의 소집단이 참여하였다. 스마트 기기를 활용한 소집단 과학 학습 과정에서 일어나는 언어적 상호작용을 녹음 및 녹화하고 기록 원고를 작성한 뒤 분석하였다. 학생들 사이의 언어적 상호작용은 개별 진술과 상호작용 단위 수준에서 분석하였다. 연구 결과, 스마트 기기를 활용한 소집단 학습에서 학생 사이의 언어적 상호작용은 과제 관련 진술의 빈도가 높았는데, 특히 정보 설명, 정보 질문, 기준 반성의 빈도가 높았다. 방향 설명, 기준 반성, 진행에서는 사전 성취 수준 상위 학생들의 진술 빈도가 높게 나타났고, 방향 질문, 정보 설명에서는 하위 수준 학생들의 진술 빈도가 높게 나타났다. 상호작용 단위에서는 지식 구성 상호작용 중 대칭적 정교화 상호작용의 빈도가 높았는데, 특히 누적형과 평가형이 높게 나타났다.
문서에서 저자의 의도와 주제, 그 안에 포함된 감성을 분석하는 것은 자연어 연구의 핵심적인 주제이다. 이와 유사하게 특정 글에 포함된 정치적 문화적 편향을 분석하는 것 역시 매우 의미 있는 연구주제이다. 우리는 최근 발생한 한 사건에 대하여 여러 신문사와 해당 신문사에서 생산한 기사를 중심으로 해당 글의 정치적 편향을 정량화 하는 방법을 제시한다. 그 방법은 선택된 주제어들의 문장 공간에서의 거리를 중심으로 그래프를 생성하고, 생성된 그래프의 기계학습을 통하여 편향과 특징을 분석하였다. 그리고 그 그래프들의 시간적 변화를 추적하여 특정 신문사에서 특정 사건에 대한 입장이 시간적으로 어떻게 변화하였는지를 동적으로 보여주는 그래프 애니메이션 시스템을 개발하였다. 실험을 위하여 최근 이슈에 대하여 12개의 신문사에서 약 2000여 개의 기사를 수집하였다. 그 결과, 약 82%의 정확도로 일반적으로 알려진 정치적 편향을 예측할 수 있었다. 또한, 학습 데이터에 쓰이지 않은 신문기사를 활용하여도 같은 정도의 정확도를 보임을 알 수 있었다. 우리는 이를 통하여 신문기사에서의 정치적 편향은 작성자나 신문사의 특성이 아니라 주제어들의 문장 공간에서의 거리 관계로 특성화할 수 있음을 보였다. 할 수 있다.
본 논문은 스마트시대 이러닝 운영 현황의 한계점을 분석하고 인터넷 정신을 접목한 개선방안을 제시하여 그 효과를 실증적으로 분석하였다. 대학에서 활용되는 이러닝 클래스의 운영방식에 대하여 중점적으로 논한다. 오프라인 클래스의 운영모델을 온라인 환경에 원용함으로 인해 발생하는 부작용 등을 통계적으로 확인한다. 특히 시간이라는 정량적 개념이 온라인 학습에서 참여확인을 위해 활용되고 있는 이러닝 모델의 현실적, 기능적 한계를 구체적으로 분석하였다. 이에 대한 개선안으로 인터넷의 태생적 특징인 참여, 개방, 공유의 정신을 이러닝에 접목시킬 수 있는 방안으로 QBS시스템을 개발, 제안한다. 학습자가 주도적으로 문제를 만들어 학습 자료로써 공유하는 QBS를 실제 이러닝 현장에 적용하여 학습자의 행동양상을 분석한다. 결과적으로 이러닝 학습 환경에서 학습자 참여형 모델이 학업성취도에 유의미한 영향이 있음을 확인함으로써 스마트시대의 새로운 이러닝 모델의 개선방향을 제시한다.
The importance of the decentralized training with decentralized execution (DTDE) framework is well-known in the study of multiagent reinforcement learning. In many real-world environments, agents cannot share information. Hence, they must be trained in a decentralized manner. However, the DTDE framework has been less studied than the centralized training with decentralized execution framework. One of the main reasons is that many problems arise when training agents in a decentralized manner. For example, DTDE algorithms are often computationally demanding or can encounter problems with non-stationarity. Another reason is the lack of simulation environments that can properly handle the DTDE framework. We discuss current research trends in the DTDE framework.
악성코드를 분석하는 기존 기법인 정적분석은 빠르고 효율적으로 악성코드를 탐지할 수 있지만 난독화된 파일에 취약한 반면,, 동적분석은 난독화된 파일에 적합하지만 느리고 비용이 많이 든다는 단점을 가진다. 본 연구에서는 두 분석 기법의 단점을 해결하기 위해 딥러닝 모델을 활용한 난독화에 강한 정적분석 모델을 제안하였다. 본 연구에서 제안한 방법은 원본 코드 및 난독화된 파일을 grayscale 이미지로 변환하여 데이터셋을 구축하고 AutoEncoder 를 사전학습시켜 encoder 가 원본 파일과 난독화된 파일로부터 원본 파일의 특징을 추출할 수 있도록 한 이후, encoder 의 output 을 fully connected layer 의 입력으로 넣고 전이학습시켜 악성코드를 탐지하도록 하였다. 본 연구에서는 제안한 방법론은 난독화된 파일에서 악성코드를 탐지하는 성능을 F1 score 기준 14.17% 포인트 향상시켰고, 난독화된 파일과 원본 파일을 전체를 합친 데이터셋에서도 악성코드 탐지 성능을 F1 score 기준 7.22% 포인트 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.