• 제목/요약/키워드: 정반사

검색결과 420건 처리시간 0.025초

부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조 (Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$)

  • 장세복;정미숙;한영욱;김양
    • 한국결정학회지
    • /
    • 제6권2호
    • /
    • pp.125-133
    • /
    • 1995
  • 부분적으로 Co2+ 이온으로 치환된 제올라이트 X (Co41Na10Al92Si100O384)를 탈수한 구조를 21℃에서 입방공간군 Fd3(α=24.544(1)Å)을 사용하여 단결정 X-선 회절법으로 해석하고 정밀화하였다. 이 결정은 Co(NO3)2와 Co(O2CCH3)2의 농도가 각각 0.025M 되도록 만든 혼합 용액을 이용하여 흐름법으로 이온 교환하여 만들었다. 이 결정은 380℃에서 2×10-6 Torr 하에서 2일간 진공 탈수하였다. Full-matrix 최소자승법 정밀화 계산에서 I > 3σ(I)인 211개의 독립반사를 사용하여 최종 오차 인자를 R1=0.059, R2=0.046까지 정밀화시켰다. 이 구조에서 Co2+ 이온과 Na+ 이온은 서로 다른 4개의 결정학적 자리에 위치하고 있었다. 41개의 Co2+ 이온은 점유율이 높은 서로 다른 두 개의 자리에 위치하고 있었다. 16개의 Co2+ 이온은 이중 6-산소 고리 (D6R)의 중심에 위치하였고 (자리 I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°), 25개의 Co2+ 이온은 큰 동공에 있는 자리 II에 위치하고 세 개의 산소로 만들어지는 평면에서 큰 동공쪽으로 약 0.09Å 들어간 자리에 위치하고 있었다. (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). 10개의 Na+ 이온은 2개의 서로 다른 자리에 위치하고 있다. 7개의 Na+ 이온은 큰 동공에 있는 자리 II 위치하였다. (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). 3개의 Na+ 이온은 큰 동공에 있는 자리 III에 위치하고 있었다. (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). 7개의 Na+ 이온은 가장 가까운 산소 평면에서 큰 동공 쪽으로 약 1.02Å 들어간 자리에 위치하고 있었다. Co2+ 이온은 자리 I과 자리 II에 우선적으로 위치하고, Na+ 이온은 그 나머지 자리인 자리 II와 자리 III에 위치한다.

  • PDF

가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구 (Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation)

  • 이승현;정영재;이종민;김대성;배은지;홍성수;이근대
    • 청정기술
    • /
    • 제25권1호
    • /
    • pp.46-55
    • /
    • 2019
  • CdS 및 CdZnS/ZnO를 침전법으로 제조하여 가시광선하에서의 로다민 B의 광분해 반응에 대한 광촉매로 이용하였다. 제조된 광촉매들은 X선 회절분석기와 UV-vis 확산반사 분광법 등으로 특성을 분석하였으며, 그 결과 원하는 결정구조를 지닌 광촉매들이 생성되었으며 또한 CdS 및 CdZnS/ZnO 두 가지 광촉매 모두 자외선뿐만 아니라 가시광선 영역의 빛도 효율적으로 흡수함을 알 수 있었다. 여러 종류의 활성 화학종에 대한 포집제들을 첨가하면서 각각의 광촉매에 대한 활성을 조사하였으며, 특히 두 가지 촉매상에서의 반응기구 차이점에 중점을 두고 고찰하였다. 이때 $CH_3OH$, KI 및 p-benzoquinone을 각각 ${\cdot}OH$ 라디칼, 광여기 정공 그리고 ${\cdot}O_2{^-}$ 라디칼에 대한 포집제로 이용하였다. 각각의 광촉매상에서는 서로 다른 반응기구에 의해서 반응이 진행되는 것으로 나타났다. CdS 광촉매 반응에서는 ${\cdot}O_2{^-}$ 라디칼이 그리고 CdZnS/ZnO 광촉매 반응에 있어서는 광여기 정공이 중요한 역할을 하는 것으로 판단되며, 따라서 CdS와 CdZnS/ZnO 각각의 광촉매상에서는 발색단 골격의 탈알킬화 반응 및 발색단 콘쥬케이트 구조의 절단 과정을 통하여 반응이 우선적으로 진행된다는 것을 알 수 있었다. 이러한 결과들은 CdS, CdZnS 그리고 ZnO 각각 반도체들의 전도대와 가전자대의 띠끝 전위와 활성 화학종 생성에 대한 산화환원 전위의 차이에 주로 기인한 것으로 생각된다.

도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구 (A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels)

  • 류지오;안상호;이후영
    • 한국터널지하공간학회 논문집
    • /
    • 제23권6호
    • /
    • pp.517-534
    • /
    • 2021
  • 수소연료는 환경오염문제를 해소하고 에너지 불균형 및 비용을 절감할 수 있다는 점에서는 화석연료를 대체하는 에너지원으로 부각되고 있다. 수소는 친환경적이나 폭발성이 강하기 때문에 수소연료차의 화재, 폭발 사고에 대한 우려가 매우 높은 실정이다. 연구결과에서 수소사고는 일반적인 화재의 경우 비교적 안전하나, 폭발이 발생하면 매우 위험한 것으로 인식되고 있다. 특히, 터널과 같은 반밀폐공간에서는 위험도가 보다 증가할 것으로 예측되기에 이에 대한 예측방법 및 대책을 마련하기 위한 연구가 수행되고 있다. 이에 본 연구에서는 터널에서 수소폭발시 안전성을 평가하기 위해서 등가 TNT모델의 적용성과 수치해석 방법에 대한 검토를 수행하였다. 6개의 등가 TNT모델과 Weyandt의 실험결과의 폭발압력을 비교·검토하여 모델의 적용성을 평가한 결과, Henrych식이 13.6%의 편차로 가장 근접하는 것으로 나타났다. 수치해석을 이용하여 수소탱크 용량(52, 72, 156 L)과 터널 단면적(40.5, 54, 72, 95 m2)이 폭발압력에 미치는 영향에 대한 검토한 결과, 터널에서 폭발 압력파는 초기에는 대기중에서와 마찬가지로 반구형 형태로 전파되나 벽체에 도달하면 반사파가 형성되며, 일정 거리 이상에서는 평면파로 변형되어 아주 완만한 감쇄율로 전파하는 것으로 나타났다. 등가 TNT모델인 Henrych식은 폭발압력이 급격하게 감소하는 구간에서는 수치해석 결과와 잘 일치하나 폭발압력파가 변형된 이후에는 큰 폭으로 과소평가하는 것으로 나타났다. 수소탱크용량이 동일한 경우에는 터널 단면적이 증가할수록 폭발압력이 감소하며, 단면적이 동일한 경우에는 수소탱크 용량이 52 L에서 156 L로 증가하면 폭발압력은 약 2.5배 정도 증가하는 것으로 나타났다. 인체에 영향을 미치는 한계거리에 대한 평가결과, 수소탱크용량이 52 L인 경우 사망에 이르는 한계거리는 약 3 m, 중상에 이르는 거리는 단면적별로 차이가 있으나 28.5~35.8 m로 나타났다.

딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측 (Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do)

  • 박혜빈;이예진;박선영
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1031-1042
    • /
    • 2023
  • 인공위성은 시공간적으로 연속적인 지구환경 데이터를 제공하므로 위성영상을 이용하여 효율인 작물 수확량 예측이 가능하며, 딥러닝(deep learning)을 활용함으로써 더 높은 수준의 특징과 추상적인 개념 파악을 기대할 수 있다. 본 연구에서는 Landsat 8 위성 영상을 활용하여 다시기 영상 데이터를 이용하여 5대 수급 관리 채소인 배추와 무의 수확량을 예측하기 위한 딥러닝 모델을 개발하였다. 2015년부터 2020년까지 배추와 무의 생장시기인 6~9월 위성영상을 이용하여 강원도를 대상으로 배추와 무의 수확량 예측을 수행하였다. 본 연구에서는 수확량 모델의 입력자료로 Landsat 8 지표면 반사도 자료와 normalized difference vegetation index, enhanced vegetation index, lead area index, land surface temperature를 입력자료로 사용하였다. 본 연구에서는 기존 연구에서 개발된 모델을 기반으로 우리나라 작물과 입력데이터에 맞게 튜닝한 모델을 제안하였다. 위성영상 시계열 데이터를 이용하여 딥러닝 모델인 convolutional neural network (CNN)을 학습하여 수확량 예측을 진행하였다. Landsat 8은 16일 주기로 영상이 제공되지만 구름 등 기상의 영향으로 인해 특히 여름철에는 영상 취득에 어려움이 많다. 따라서 본 연구에서는 6~7월을 1구간, 8~9월을 2구간으로 나누어 수확량 예측을 수행하였다. 기존 머신러닝 모델과 참조 모델을 이용하여 수확량 예측을 수행하였으며, 모델링 성능을 비교했다. 제안한 모델의 경우 다른 모델과 비교했을 때, 높은 수확량 예측 성능을 나타내었다. Random forest (RF)의 경우 배추에서는 제안한 모델보다 좋은 예측 성능을 나타내었다. 이는 기존 연구 결과처럼 RF가 입력데이터의 물리적인 특성을 잘 반영하여 모델링 되었기 때문인 것으로 사료된다. 연도별 교차 검증 및 조기 예측을 통해 모델의 성능과 조기 예측 가능성을 평가하였다. Leave-one-out cross validation을 통해 분석한 결과 참고 모델을 제외하고는 두 모델에서는 유사한 예측 성능을 보여주었다. 2018년 데이터의 경우 모든 모델에서 가장 낮은 성능이 나타났는데, 2018년의 경우 폭염으로 인해 이는 다른 년도 데이터에서 학습되지 못해 수확량 예측에 영향을 준 것으로 생각되었다. 또한, 조기 예측 가능성을 확인한 결과, 무 수확량은 어느 정도 경향성을 나타냈지만 배추의 경우 조기 예측 가능성을 확인하지 못했다. 향후 연구에서는 데이터 형태에 따라 CNN의 구조를 조정해서 조기 예측 모델을 개발한다면 더 개선된 성능을 보일 것으로 생각된다. 본 연구 결과는 우리나라 밭 작물 수확량 예측을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.

심층신경망 기반의 해수 고유광특성 도출 (Derivation of Inherent Optical Properties Based on Deep Neural Network)

  • 이형탁;최혜민;김민규;윤석;김광석;문정언;한희정;박영제
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.695-713
    • /
    • 2023
  • 연안 해역에서 식물성플랑크톤, 부유입자, 용존유기물은 복합적이고 비선형적으로 해수반사도를 변화시킨다. 최근 빠르게 발전하는 신경망 기술은 복잡한 비선형 관계를 효과적으로 처리할 수 있는 장점이 있다. 기존 연구에서는 성분별 고유광특성을 도출하기 위하여 세 단계의 신경망을 구성하였으나 본 연구에서는 심층신경망을 직접 적용하는 알고리즘을 제안하였다. 본 연구에서 활용한 데이터세트는 국제해색조정그룹에서 제공하는 합성데이터를 활용하였으며, 입력데이터는 9개의 파장의 원격반사도를 입력하였다. 이를 통해 해수 고유광특성을 심층신경망을 기반으로 도출하였다. 성능을 평가하기 위해 준분석 알고리즘(quasi-analytical algorithm)과 비교하였으며, 데이터 분포에 따른 로그 변환 여부가 심층신경망 알고리즘의 성능에 영향을 미치는 정도를 비교 분석하였다. 그 결과, 준분석 알고리즘보다 심층신경망 알고리즘을 활용하면 부유입자에 대한 흡광계수를 제외한 고유광특성을 정확하게 추정할 수 있으며(R2 0.9 이상), 부유입자와 용존유기물의 흡광계수를 부유입자와 용존유기물 흡광계수로 각각 분리할 수 있었다. 그리고 심층신경망을 직접적으로 적용하는 알고리즘은 데이터의 로그 변환을 하지 않아도 성능 차이가 거의 없음을 파악할 수 있었다. 이 연구 결과를 해색 자료 처리에 실제 적용하기 위해서는 다양한 해역의 현장자료 및 추가적인 데이터 세트를 활용한 학습을 진행하여, 경험적 및 반분석적 방법과 비교 분석하고 알고리즘 간 장단점을 적절히 파악하는 연구가 필요하다.

딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지 (Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images)

  • 서영민;윤유정;김서연;강종구;정예민;최소연;임윤교;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1413-1425
    • /
    • 2023
  • 기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.

GOCI를 이용한 GOCI-II 근적외 밴드 교차보정 (Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI)

  • 이은경;배수정;안재현;이경상
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1553-1563
    • /
    • 2023
  • 천리안 해양관측위성 2호기(Geostationary Ocean Color Imager-II, GOCI-II)는 한반도 주변을 포함한 동북아 해역과 전구 영역을 관측하는 해색 위성으로 지난 10년간 운용된 GOCI의 임무를 이어받아 2020년부터 현재까지 운용되고 있다. 본 연구에서는 해색 데이터 산출에 있어 필수 과정인 대기보정 알고리즘을 개선하기 위해 GOCI 영상을 이용한 GOCI-II 근적외 파장(near-infrared, NIR) 밴드의 대리교정을 수행하였다. 이를 위해 NIR 밴드의 대기상층(top-of-atmosphere, TOA) radiance에 대한 교차보정 연구를 수행하였으며, 그 결과로 대리교정 상수를 도출하였다. 본 연구에서 도출된 대리교정 상수를 이용하여 보정한 결과 두 센서의 offset이 감소하였으며, ratio는 745 nm, 865 nm에 대해 각 1.02, 1.04에서 1.0, 0.99로 개선되었다. 이는 두 센서의 일관성이 높아진 것으로 판단된다. 또한, 대기 분자 산란 보정 반사도(Rayleigh-corrected reflectance, 𝜌rc)는 각각 5.62, 9.52% 증가하였다. 이로 인해 745 nm와 865 nm 𝜌rc의 비율의 차이가 발생했으며, 이는 대기보정 알고리즘 내 에어로졸 광 산란 보정 과정을 통해 모든 밴드의 대기보정 결과에 영향을 줄 수 있다. GOCI, GOCI-II 두 위성의 중복되는 운용 기간이 짧아 2021년 3월의 자료만을 사용하였으나, 향후 타위성과의 지속적인 교차보정 연구를 통해 개선이 가능할 것으로 사료된다. 또한 본 연구에서 도출된 NIR 밴드의 대리교정 상수를 적용하여 가시 채널의 대리교정을 수행하고, 해색 산출물의 정확도에 미치는 영향을 분석할 필요가 있다.

제올라이트 X의 두 개의 무수물 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$의 결정구조 (Two Anhydrous Zeolite X Crystal Structures, $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}\;and\;Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$)

  • 최은영;김양
    • 대한화학회지
    • /
    • 제43권4호
    • /
    • pp.384-385
    • /
    • 1999
  • $Ca^{2+}$ 이온과 $Tl^+$ 이온으로 치환되고 완전히 진공 탈수된 제올라이트 X결정 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$ ($Ca_{18}Tl_{56}$-X;${\alpha}=24.883(4){\AA}$)와 $Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$ ($Ca_{32}Tl_{28}$-X;${\alpha}=24.973(4){\AA}A$)의 구조를 21(1)TEX>$^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 그 구조를 정밀화 하였다 $Ca_{18}Tl_{56}$-X 결정은 0.045 M $Ca(NO_3)_2$와 0.005 M $TINO_3$ 혼합용액으로 흐름법을 이용하여 이온 교환하였다. $Ca_{32}Tl_{28}$-X는 이와 유사하게 0.0495 M $Ca(NO_3)_2$ 와 0.0005 M $TINO_3$ 혼합용액을 사용하였다. 각 결정은 360$^{\circ}C$, $2{\times}10^{-6}$ Torr에서 탈수시켰다. $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조는 각각 I > 3${\sigma}$ (I)인 382 및 472개의 회절 반사점을 사용하여 각각 $R_1=0.039,\;R_2=0.036$$R_1=0.046,\;R_2=0.045$의 최종 오차 지수 값을 얻었다. 탈수된 $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조에서, $Ca^{2+}$ 이온과 $Tl^+$ 이온은 서로 틀리는 6개의 결정학적 자리에 위치한다. 16개의 $Ca^{2+}$ 이온은 D6R의 중심인 팔면체 자리 I을 채운다 ($Ca_{18}Tl_{56}$-X : Ca-O=2.42(1) ${\AA}$ 및 O-Ca-O=93.06(4)$^{\circ}$; $Ca_{32}Tl_{28}$-X Ca-O=2.40(1) ${\AA}$ 및 O-Ca-O=93.08(3)$^{\circ}$). $Ca_{18}Tl_{56}$-X 구조에서는 2개의 $Ca^{2+}$ 이온은 자리 II (Ca-O=2.35(2) ${\AA}$ 및 O-Ca-O=111.69(2)$^{\circ}$)를 점유하고 26개의 $Tl^+$ 이온은 큰 동공 내 마주보는 S6R의 자리 II에 점유한다. 각기 3개의 산소로 만들어지는 평면으로부터 1.493 ${\AA}$ 떨어져 있다(Tl-O=2.70(8)${\AA}$ 및 O-Tl-O=92.33(4)$^{\circ}$). 약 4개의 $Tl^+$ 이온은 세 개의 산소로 만들어지는 평면으로부터 소다라이트 동공쪽으로 1.695${\AA}$ 떨어진 자리 II에 위치해 있다(Tl-O=2.81 (1) ${\AA}$ 및 O-Tl-O=87.48(3)$^{\circ}$). 나머지 26개의 $Tl^+$ 이온들은 자리 III'에 분포된다(Tl-O=2.82 (1) ${\AA}$ 및 Tl-O=2.88(3) ${\AA}$). Ca_{32}Tl_{28}$-X 결정 구조에서는 16개의 $Ca^{2+}$ 이온과 15개의 $Tl^+$ 이온들이 자리 II를 점유하고 있다(Ca-O=2.26(1) ${\AA}$ 및 O-Ca-O=119.14(4)$^{\circ}$; Tl-O=2.70(1) ${\AA}$ 및 O-Tl-O=92.38$^{\circ}$). 한 개의 $Tl^+$ 이온들은 자리 II'를 점유한다. 나머지 12개의 $Tl^+$ 이온들은 자리IlI'에 분포된다.

  • PDF

부분적으로 스트론튬이온으로 교환되고 탈수된, 제올라이트 X의 결정구조 (Crystal Structures of Dehydrated Partially $Sr^{2+}$-Exchanged Zeolite X, $Sr_{31}K_{30}Si_{100}A1_{92}O_{384}\;and\;Sr_{8.5}TI_{75}Si_{100}AI_{92}O_{384}$)

  • 김미정;김양;칼세프
    • 한국결정학회지
    • /
    • 제8권1호
    • /
    • pp.6-14
    • /
    • 1997
  • 제올라이트 X에 $Sr^{2+}$$K^+$ 이온이 교환된 $Sr_{31}K_{30}-X$$Sr^{2+}$$Tl^+$ 이온이 교환된 $Sr_{8.5}Tl_{75}$의 결정구조를 공간군 Fd3로 $21(1)^{\circ}C$에서 단결정 X선 결정학적 방법으로 해석하였다. 각각의 결정은 $Sr(ClO_4)_2$와 (K 혹은 Tl)$NO_3$의 몰 비가 1 : 5인 용액을 사용해서 흐름 법으로 5일 동안 이온 교환시키고 $360^{\circ}C$에서 진공탈수 시켜 두 결정을 얻었다. 이들 결정은 회절강도가 $I>2{\sigma}(I)$인 293개와 351개의 회절반사를 사용하여 최종오차인자가 $R_1=0.072,\;R_w=0.057$$R_l= 0.058,\;R_w=0.044$까지 각각 정밀화하였다. $Sr_{31}K_{30}-X$결정에서 $Sr^{2+}$ 이온과 $K^+$ 이온은 모두 다섯 개의 서로 다른 결정학적 자리에 존재하였다. 단위세포당 16개의 $Sr^{2+}$ 이온은 결정학적 자리 I인 D6R의 중심에 각각 위치하고 D6R 모두를 채우고 있다. 나머지 15개의 $Sr^{2+}$ 이온과 17개의 $K^+$ 이온은 큰 동공 속에 있는 결정학적 자리II에 위치하고 세 개의 산소이온이 이루는 평면에서 각각 $0.45{\AA},\;1.06{\AA}$ 큰 동공속으로 이동하여 위치하고 골조산소와 결합거리는 각각 $2.45(1){\AA},\;2.64(1){\AA}$이다. 13개의 $K^+$ 이온은 두 개의 다른 결정학적자리 III'에 위치하며 인접한 산소와의 결합거리는 각각 $2.88(7){\AA}$$3.11(10){\AA}$이다. $Sr_{8.5}Tl_{75}-X$에서는 $Sr^{2+}$이온과 $Tl^+$ 이온이 역시 다섯 개의 서로 다른 결정학적 자리에 위치한다. 약 8.5개의 $Sr^{2+}$ 이온은 결정학적 자리 I에 있으며, 15개의 $Tl^+$ 이온은 D6R의 3회 전축상의 소다라이트내에 있는 결정학적 자리 I'에 있다. 이 $Tl^+$ 이온은 골조산소와의 결합거리가 $2.70(2){\AA}$이며 세 개의 산소가 이루는 평면에서 $1.68{\AA}$ 소다라이트내로 이동하여 위치한다. 32개의 $Tl^{+}$ 이온은 결정학적 자리 II에 존재하고 있으며 산소와의 결합거리를 $2.70(1){\AA}$을 유지하면서 큰 동공속으로 $1.48{\AA}$ 이동하여 위치한다. 약 18개의 $Tl^+$ 이온은 결정학적 자리III에, 또 다른 10개의 $Tl^+$ 이온은 결정학적 자리III'에 존재하고 골조 산소와 각각 $2.86(2){\AA},\;2.96(4){\AA}$의 결합거리를 이룬다.

  • PDF

臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰 (A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn)

  • 조재훈;채병윤;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제15권2호
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF