• Title/Summary/Keyword: 정밀 저항

Search Result 462, Processing Time 0.028 seconds

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Multi-channels Ceramic Microfiltration and Activated Carbon Adsorption (다채널 세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • In this study, we used multi-channels ceramic membrane having larger permeate volume per unit time rather than tubular membrane. The hybrid process for advanced drinking water treatment was composed of granular activated carbons (GAC) packing between module inside and outside of multi-channels microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Kaolin concentration was fixed at 30mg/L and humic acid was changed as $2{\sim}10\;mg/L$ to inspect effect of organic matters. As a result, both resistance of membrane fouling ($R_f$) and permeate flux (J) were highly influenced by concentration of humic acid. Also, in result of water-back-flushing period (FT) effect, the shorter FT was the more effective to reduce membrane fouling and to enhance permeate flux because of frequent water-back-flushing. However, the optimal FT condition was 8 min when operating costs were considered. Then, the hybrid process using multi-channels ceramic membrane and GAC was applied to lake water treatment. As a result, average treatment efficiencies in our experiment using the hybrid process were 98.02% for turbidity, 75.64% for $UV_{254}$ absorbance, 7.18% for TDS and 84.73% for $COD_{Mn}$.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads: Effect of Organic Matters, Adsorption and Photo-oxidation at Water Back-flushing (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리: 물 역세척 시 유기물 및 흡착, 광산화의 영향)

  • Park, Sung Woo;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.159-169
    • /
    • 2013
  • The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. The results of water and nitrogen back-flushing were compared in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as increasing HA, Rf increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. Average turbidity treatment efficiencies were almost same independent of HA concentration. Average organic matter treatment efficiency was the minimum 71.4% at 10 mg/L HA in water back-flushing, but those were almost constant in nitrogen back-flushing. The hybrid process of MF, PES beads, and UV (MF + $TiO_2$ + UV) have the lowest $R_f$, and the highest J and $V_T$ in both water and nitrogen back-flushing. The turbidity and organic matter treatment efficiencies were the maximum at MF + $TiO_2$ + UV independent of water and nitrogen back-flushing, and decreased sequently as simplifying the process to MF. However, adsorption performed the more important role than photo-oxidation in water back-flushing, and photo- oxidation was the more than adsorption in nitrogen back-flushing.

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers (열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향)

  • Kim, Jong Gu;Chung, Choul Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

Effective Geophysical Methods in Detecting Subsurface Caves: On the Case of Manjang Cave, Cheju Island (지하 동굴 탐지에 효율적인 지구물리탐사기법 연구: 제주도 만장굴을 대상으로)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Lee, Gyu-Ho;Rim, Hyoung-Rea;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.408-422
    • /
    • 2000
  • Multiple geophysical methods were applied over the Manjang cave area in Cheju Island to compare and contrast the effectiveness of each method for exploration of underground cavities. The used methods are gravity, magnetic, electrical resistivity and GPR(Ground Pentrating Radar) survey, of which instruments are portable and operations are relatively economical. We have chosen seven survey lines and applied appropriate multiple surveys depending on the field conditions. In the case of magnetic method. two-dimensional grid-type surveys were carried out to cover the survey area. The geophysical survey results reveal the characteristic responses of each method relatively well. Among the applied methods, the electric resistivity methods appeared to be the most effective ones in detecting the Manjang Cave and surrounding miscellaneous cavities. Especially, on the inverted resistivity section obtained from the dipole-dipole array data, the two-dimensional distribution of high resistivity cavities are revealed well. The gravity and magnetic data are contaminated easily by various noises and do not show the definitive responses enough to locate and delineate the Manjang cave. But they provide useful information in verifying the dipole-dipole resistivity survey results. The grid-type 2-D magnetic survey data show the trend of cave development well, and it may be used as a reconnaissance regional survey for determining survey lines for further detailed explorations. The GPR data show very sensitive response to the various shallow volcanic structures such as thin spaces between lava flows and small cavities, so we cannot identify the response of the main cave. Although each geophysical method provides its own useful information, the integrated interpretation of multiple survey data is most effective for investigation of the underground caves.

  • PDF

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF

Development of Acid Resistance Velocity Sensor for Analyzing Acidic Fluid Flow Characteristics (산성 용액 내 유속 측정을 위한 내산성 센서 개발)

  • Choi, Gyujin;Yoon, Jinwon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.629-636
    • /
    • 2016
  • This study presents the development of an acid resistance velocity sensor that is used for measuring velocity inside a copper sulfate plating bath. First, researchers investigated the acid resistance coating to confirm the suitability of the anti-acid sensor in a very corrosive environment. Then, researchers applied signal processing methods to reduce noise and amplify the signal. Next, researchers applied a pressure-resistive sensor with an operation amplifier (Op Amp) and low-pass filter with high impedance to match the output voltage of a commercial flowmeter. Lastly, this study compared three low-pass filters (Bessel, Butterworth and Chebyshev) to select the appropriate signal process circuit. The results show 0.0128, 0.0023, and 5.06% of the mean square error, respectively. The Butterworth filter yielded more precise results when compared to a commercial flowmeter. The acid resistive sensor is capable of measuring velocities ranging from 2 to 6 m/s with a 2.7% margin of error.

Investigation of Membrane Fouling in Microfiltration by Characterization of Flocculent Aggregates (응집플록의 특성분석을 통하여 관찰된 정밀여과 막오염 현상에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.337-344
    • /
    • 2006
  • Characteristics of flocculent aggregates have great effects on membrane fouling. Floc from kaolin particles gave higher permeate throughputs than floc from natural particles at the same conditions. Therefore, the objectives of this study are to thoroughly analyze characteristics of flocculated aggregates and to investigate effects of flocculated aggregates on membrane fouling. Image analysis, specific rake resistance and cake compressibility were used for characterization of flocs. Different flocculent aggregates formed with natural and kaolin particles were employed in this study. The fractal dimensions from the image analysis were $D_2=1.79{\pm}0.07$ for floc from natural particles and $D_2=1.84{\pm}0.06$ for floc from kaolin particles. The lower fractal dimension($D_2$) of floc from natural particles indicated that the aggregates were more porous and less compact than floe from kaolin particles. In addition, both the specific cake resistances and compressible degrees of flocs from natural particles showed greater values than those of flocs from kaolin particles. The results implied that the porous and loose flocs from natural particles were more easily compressed on membrane surface than the dense and compact flocs from kaolin particles. The compressed flocs yielded the great hydraulic resistances by hindering the water flow through the cake layer.

Influences of Slag Replacement on the Properties of Shotcrete Using a Slurry-Type Set Accelerator (슬래그 혼입량이 슬러리형 급결제를 활용한 숏크리트 몰탈의 물성에 미치는 영향)

  • Kim, Hyunwook;Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.389-396
    • /
    • 2014
  • The set accelerator used for shotcrete at high pH environment often causes the dusting problem in practice. In this research, a slurry-type set accelerator was developed to avoid this problem and its effectiveness was investigated by applying it to shotcrete mortars. Set time, stiffening, compressive strength, and chloride ion penetration resistance were examined with different amounts of slag, used as partial replacement of cement. According to the experimental results, it was found that the earlier responses such as set time, stiffening, and 1-day compressive strength were probably affected by the amount of ettringite, formulated by the hydration between C12A7 and calcium sulfate polymorphs present in blast furnace slag. Whereas, it is believed that the result of compressive strength after 3 days was attributed to the hydration of tricalcium silicates. As for the results of a chloride ion penetration test, the partial replacement of cement with slag significantly reduced the total charge passed through the shotcrete mortar.