• Title/Summary/Keyword: 정밀 저항

Search Result 462, Processing Time 0.03 seconds

Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP (운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

Thick Film Resistors with Low Tolerance Using Photosensitive Polymer Resistor Paste (감광성 폴리머 저항 페이스트를 이용한 Low Tolerance 후막 저항체)

  • Kim, Dong-Kook;Park, Seong-Dae;Lee, Kyu-Bok;Kyoung, Jin-Bum
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.411-416
    • /
    • 2010
  • In this research, we intended to improve the tolerance of thick film resistor using photosensitive polymer resistor paste which was fabricated with alkali-solution developable photosensitive resin and conductive carbon black. At first, we investigated the effect of the selection of carbon black and photosensitive resin on the resistance range and tolerance level of polymer thick film resistor (PTFR). And then, a difference in resistance tolerance was evaluated according to the coating methods of photosensitive resistor paste on test board. In case that the photosensitive resistor paste was coated on whole surface of test board using screen printing, large positional tolerance was obtained because the formation of the thick film with uniform thickness was difficult. On the other hand, when the paste was coated with roller, the resistive thick film with uniform thickness was formed on the whole board area and the result of resistance evaluation showed low tolerance in ${\pm}10%$ range. The tolerance of PTFR could be improved by combination of the precise patterning using photo-process and the coating process for the resistive thick film with uniform thickness.

고속 환봉절단(Cropping) 금형의 최적설계(1)

  • 박준수;임성주;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.73-77
    • /
    • 1992
  • 환봉소재의 정밀절단을 위한 고속 환봉절단 공정에 있어서 절단금형은 공정중 막대한 타격력을 받기 때문에 금형의 파손방지 및 내구성향상을 위한 금형설계 기술이 절실히 요구되고 있다. 이같은 절단금형의 최적설계를 위해선 타격시 램이 금형에 가하는 충격력에 대한 예측이 필수적이므로 본 연구에서는 환봉절단 공정에 대한 동역학적 해석을 통해 충격력과 접촉시간을 이론적으로 구하였으며 이를 기존의 이론값과 비교한 결과, 보다 정확한 충격력의 예측이 가능하였다. 그리고 본 이론을 국내 최초로 개발된 환봉절단 장치에 적용하여 타격속도, 절단저항, 램과 금형의 하중비 등의 인자들과 충격력 사이의 관계를 밝혀냄으로써, 향후 최적금형 설계를 위한 데이터 베이스를 구축하였다.

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (지지조건이 압저항 가속도 센서의 민감도에 미치는 영향 평가)

  • Shim J.J.;Han G.J.;Han D.S.;Lee S.W.;Kim T.H.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1381-1384
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness. And according to the increment of seismic mass size, the value of resistance change ratio is decreased by increase of the structure stiffness. Y directional piezoresistor is formed in the position of $100\mu{m}\;apart\;from\;cantilever\;edge\;and\;length\;of\;that\;is\;800\mu{m}$.

  • PDF

Temperature Effects in the Resistivity Monitoring at Embankment Dams (저수지 전기비저항 모니터링에서의 온도효과)

  • Kim, Eun-Mi;Cho, In-Ky;Kim, Ki-Seog;Yong, Hwan-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.82-93
    • /
    • 2018
  • Resistivity monitoring data at embankment dams are affected by the seasonal temperature variation. Especially when the seasonal temperature variation is large like Korea, the temperature effects may not be ignored in the longterm resistivity monitoring. Therefore, temperature effects can make it difficult to accurately interpret the resistivity monitoring data. In this study, through analyzing the time series of ground temperature collected at an embankment dam, ground temperature variations are calculated approximately. Then, based on the calculated temperature profile with depth, the inverted resistivity model of the embankment dam is corrected to remove the temperature effects. From these corrections, it was confirmed that the temperature effects are significant in the upper, superficial part of the dam, but can be ignored at depth. However, temperature correction based only on the temperature distribution in the dam body cannot remove the temperature effect thoroughly. To overcome this problem, the effect of temperature variation in the reservoir water seems to be incorporated together with the air temperature variation.