• 제목/요약/키워드: 정밀 연삭

검색결과 478건 처리시간 0.031초

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;박천홍;조순주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

지르코니아 세라믹스 페룰의 연삭 특성 (Grinding Characteristic of ZrO$_2$ Ceramics Ferrule)

  • 이석우;최영재;김기환;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1911-1915
    • /
    • 2003
  • Today optical communication industry is developed; demand of optical communication part is increased. ZrO$_2$ ceramic ferrule is very significant part which determines transmission efficiency and quality of information in the optical communication part by connector of optical fibers. Being different from metal grinding, material removal through brittle fracture plays an important role in ZrO$_2$ ceramic grinding. Most of ZrO$_2$ ceramic ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter are very important. The co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ZrO$_2$ ceramic ferrule is affected by grinding conditions, and equipment. In this study, surface integrity of workpiece according to such as a change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ZrO$_2$ ceramic ferrule from many experiments. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

실리콘 웨이퍼 연삭의 형상 시뮬레이션 (Profile Simulation in Mono-crystalline Silicon Wafer Grinding)

  • 김상철;이상직;정해도;최헌종;이석우
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

실리콘 웨이퍼 연삭의 형상 시뮬레이션 (Profile Simulation in Mono-crystalline Silicon Wafer Grinding)

  • 김상철;이상직;정해도;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.98-101
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive. the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, 1st, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the flatness of the ground wafer. Generally, the ground wafer has concave profile because of the difference of wheel path density, grinding temperature and elastic deformation of the equiptment. Tilting mathod is applied to avoid such non-uniform material removes. So, in this paper, the geometric analysis on grinding process is carried out, and then, we can predict the profile of th ground wafer by using profile simulation.

  • PDF

단결정 사파이어 광학소자의 ELID 경면연삭 가공 특성 (Properties of ELID Mirror-Surface Grinding for Single Crystal Sapphire Optics)

  • 곽재섭;김건희;이용철;오오모리 히토시;곽태수
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.247-252
    • /
    • 2012
  • This study has been focused on application of ELID mirror-surface grinding technology for manufacturing single crystal optic sapphire. Single crystal sapphire is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. Mirror-surface machining technology is necessary to use sapphire as optic parts. The ELID grinding system has been set up for machining of the sapphire material. According to the ELID experimental results, it shows that the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.

초음파 진동 테이블이 질화알루미늄 세라믹의 ELID 연삭 가공에 미치는 영향 (The Effect of Ultrasonic Vibration Table on ELID Grinding Process of Aluminum Nitride Ceramics)

  • 곽태수;정명원;김건희;곽인실
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1237-1243
    • /
    • 2013
  • This study has focused on the effect of ultrasonic vibration table in ELID grinding process of aluminum nitride ceramics. Aluminum nitride ceramics has superior physical and chemical properties and widely used in IC, LSI substrate, package and so on. To achieve the high effective machining of brittle and high strength ceramics as like aluminum nitride, machining method combined ELID grinding and ultrasonic vibration has been adopted in this study. From the experimental results, material removal rate, MRR has been increased maximum 36 percent and spindle resistance has been decreased in using ultrasonic table. Surface roughness of ground surface became a little worse in using ultrasonic table but was somewhat improved in feed direction.

알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성 (Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics)

  • 이용철;정명원;김태규;곽태수
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

차세대 하이브리드 수직형 복합 연삭시스템의 개발 (The Development of Hybrid Vertical Grinding System)

  • 최승건;김성현;최웅걸;이은상;최지훈;이석주;김규동
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1139-1145
    • /
    • 2013
  • Machine tools are the cores of industrial development in recent period. It is difficult to develop a system which can do cutting and grinding process in the one system. Hybrid Vertical Grinding System is capable of processing in a single apparatus cutting or grinding. The modal analysis and structural analysis for the development of Hybrid Vertical Grinding System is the first time of domestic work. This paper describes the technologies of Hybrid Vertical grinding machine and intend to introduce the studies in the development of the Hybrid Vertical Grinding System.

금속결합제 연삭 숫돌의 ELID 전해속도 자동 조절장치 개발 (Development of Auto-Control Power Supply of ELID Electrolysis Speed for Metal-Bonded Grinding Wheel)

  • 신건휘;곽태수
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.899-904
    • /
    • 2016
  • ELID grinding is an excellent technique for the mirror grinding of the variety of the advanced metallic or nonmetallic materials. The focus of this study is the development of an automatic-control electrolysis-speed device for the automation of the ELID-grinding process. For the development of the automatic-control electrolysis-speed device, analysis experiments regarding the ELID cycle and oxide-layer removal and creation were conducted according to a truing and dressing process. Also, a comparative experiment was conducted to confirm the variance of the electrolysis speed in accordance with changes of the voltage. The experiment results for the developed automatic-control electrolysis-speed device show that the developed device could control the electrolysis speed according to voltage changes through the use of the data that are monitored during the ELID-grinding process.

초경합금재의 내면연삭에서 가공능률 향상에 관한 연구 (A Study on the Internal Grinding of Tungsten Carbide Materials to Improve the Machining Performance)

  • 허성중
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.52-58
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Through the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding efficiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the residual stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface roughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as possible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20~25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF