• Title/Summary/Keyword: 정밀위치제어

Search Result 556, Processing Time 0.035 seconds

Precision Position and Gap Control for High Density Optical Head Using Bimorph PZT (Bimorph PZT를 이용한 고밀도 광학헤드의 정밀위치 및 간극제어)

  • 권영기;홍어진;박태욱;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.888-893
    • /
    • 2004
  • This paper proposed a dual actuator using bimorph PZT for information storage device based on prove array NSOM(Near-field Scanning Optical Microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(Finite Element Analysis), and compared with experimental results. Different control algorithms were used f3r two bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

  • PDF

The Obstacle Avoidance and Position Acuracy Control Algorithm for Self Controlled Mobile Robot Using Image Information And Compass Module (영상정보와 방위각 센서를 이용한 장애물 회피와 위치 정밀제어에 대한 알고리즘)

  • 구본민;최중경;박무열;류한성;권정혁;신영호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.177-180
    • /
    • 2002
  • In this paper, we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. 2-axis compass and magnetic sensor, we used wireless RF module for movable command transmiting between robot and host PC. This robot go straight until 95 percent filled screen with white color both side from input image. And the robot recognizes obstacle about 95 percent filled something, so it could turn for avoid the obstacle and conclude new path plan. it could get turning angle from 2-axis compass and magnetic sensor.

  • PDF

A precise positioning by a fuzzy-neural controller (퍼지 신경망을 이용한 정밀위치 제어)

  • Pak, Seung-Chul;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.89-91
    • /
    • 1997
  • Conventional linear control schemes often fail to provide precise positioning of a control object under the influence of friction, deadzone, saturation, etc. This paper proposes a control scheme for a precise point-to-point positioning system, which behaves well even under the above influences. The proposed scheme is composed of a fuzzy-neural controller. The neural network is employed to improve the performance of the fuzzy logic. To illustrate the effectiveness of this scheme, experiments are carried out for the cases of a fuzzy controller, the proposed fuzzy-neural controller, and the results are compared with each other.

  • PDF

Precision Position Control of Induction Motors using TCP-IP Network Board (TCP-IP네트워크 보드를 이용한 유도전동기의 정밀 위치 제어)

  • Kim, Hyun-Sik;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.221-228
    • /
    • 2008
  • This paper presents a new method for world wide network motor controlled system. It uses disturbance observer to present high precision position control algorithm to disturbance change, and to apply this to induction motors. It shows that proposed algorithm is strong in induction motor precision control for disturbance change. This system with disturbance observer used deadbeat control, which have high benefit, is good for quick disturbance compensation. To show these effectiveness the whole process is simulated by simulink, and also experimented by DSP6416 with TCP-IP network board.

Precision Position Controller of Linear Motor-Based Container Transfer System (선형전동기 기반 컨테이너 이송 시스템의 정밀 위치제어)

  • Lee, Young-Jin;Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • In this paper, we introduced a linear motor-based transfer system with an active pid controller which can be replaced with an automated guided vehicle (AGV) for the port automation. This system, which is named LMCTS(liner motor-based container transfer system), is based on PMLSM (permanent magnetic linear synchronous motor) which basically consists of stator modules on the rail and shuttle car. Therefore more progressive and adaptive control mechanisms should be required to control a system with large variation of container weight, the difference of each characteristic of stator modules, a stator module's trouble etc. We introduced an active control mechanism with an online tuning scheme using modified evolutionary strategy. Some computer simulations are implemented to assess the robustness of the proposed system.

Shape Design for Improving the Characteristics of Interior PM Synchronous Motor (매입형 영구자석 동기전동기의 특성 향상을 위한 형상설계)

  • Kim, Sung-Il;Lee, Geun-Ho;Hong, Jung-Pyo;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.814-815
    • /
    • 2008
  • 매입형 영구자석 동기전동기의 경우 고효율, 고출력 그리고 넓은 속도 범위와 같은 많은 장점에도 불구하고 상대적으로 큰 코깅토크와 토크 리플로 인하여 정밀한 위치 제어용 전동기로 사용하는데 있어 한계가 있다. 이는 flux barrier와 치 사이의 불연속적인 자기저항의 변화가 주요한 원인 중의 하나로 이를 최소화 할 수 있는 형상 설계가 필요하다. 따라서 본 논문에서는 초기 설계된 매입형 영구자석 동기 전동기의 특성을 향상시키기 위한 형상 설계를 제시하고 실험 결과를 통하여 제안된 설계 방법의 유용성을 증명하고자 한다.

  • PDF

Improvement of odometry accuracy and Parking Control for a Car-Like Mobile Robot (차량형 이동로봇의 위치 추정 정밀도 향상 기법 및 자동 주차 제어)

  • Lee, Kook-Tae;Chung, Woo-Jin;Chang, Hyo-Whan
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • Recently, automatic parking assist systems are commercially available in some cars. In order to improve the reliability and the accuracy of parking control, pose uncertainty of a vehicle and some experimental issues should be solved. In this paper, following three schemes are proposed. (1) Odometry calibration scheme for the Car-Like Mobile Robot.(CLMR) (2) Accurate localization using Extended Kalman Filter(EKF) based redundant odometry fusion. (3) Trajectory tracking controller to compensate the tracking error of the CLMR. The proposed schemes are experimentally verified using a miniature Car-Like Mobile Robot. This paper shows that odometry accuracy and trajectory tracking performance can be dramatically improved by using the proposed schemes.

  • PDF

A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle (자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

The Mechanical Characteristic Analysis and Improvement of Precision Position Control System with AC Servo Motor and Ball Screw (AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선)

  • Ko, Su-Chang;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.31-36
    • /
    • 2007
  • Effect of coulomb friction and backlash on the single loop position control has been studied for the precision position control. We have showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, we have made an inner loop with a classical velocity and torque controller which was forcing the current of d axis to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear encoder for sensing a position of the loader. Also, we have used least squares fit(LSF) observer for reducing noise when we got velocity from position outputs. We have shown a good result by using the dual loop through simulation and experiment.

  • PDF

State Feedback-Based Position Controller of VCM(Voice Coil Motor) for Precise Automated Manufacturing Process (조립구동용 VCM 정밀구동을 위한 상태궤환 방식의 위치제어기)

  • Kim, Sung-Kuk;Rajendra, Shrestha;Seok, Jul-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.129-135
    • /
    • 2010
  • The state feedback-based position controller for the voice coil motor(VCM) used in precise automated manufacturing processes is proposed and analyzed in this paper. The proposed controller has advantage over the conventional cascade-type P-PI controller in terms of the gain selection and the controller interference. The feasibility of the presented idea is verified by experimental results on a designed VCM.