• Title/Summary/Keyword: 정답 후보 문장 검색

Search Result 7, Processing Time 0.018 seconds

Answer Snippet Retrieval for Question Answering of Medical Documents (의학문서 질의응답을 위한 정답 스닛핏 검색)

  • Lee, Hyeon-gu;Kim, Minkyoung;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.927-932
    • /
    • 2016
  • With the explosive increase in the number of online medical documents, the demand for question-answering systems is increasing. Recently, question-answering models based on machine learning have shown high performances in various domains. However, many question-answering models within the medical domain are still based on information retrieval techniques because of sparseness of training data. Based on various information retrieval techniques, we propose an answer snippet retrieval model for question-answering systems of medical documents. The proposed model first searches candidate answer sentences from medical documents using a cluster-based retrieval technique. Then, it generates reliable answer snippets using a re-ranking model of the candidate answer sentences based on various sentence retrieval techniques. In the experiments with BioASQ 4b, the proposed model showed better performances (MAP of 0.0604) than the previous models.

Answer Extraction in Record Sentence using Guinness Record Adverb and Answer-Type (기네스 기록 부사와 정답 유형을 이용한 기록문장에서의 정답 추출)

  • Oh Su-Hyun;Ahn Young-Min;Lee Chung-Hee;Seo Young-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.1-3
    • /
    • 2006
  • 본 논문에서는 기네스 기록과 같은 기록정보 즉, 기록적 가치가 있는 문장에 대한 질의가 들어왔을 경우기록 부사와 정답 유형을 이용하여 정답을 추출하는 시스템에 대해 기술한다. 기록정보는 역사적이고 사실적인 내용으로, 기록부사틀 포함하는 문장을 말한다. 기록부사는 기록정보 내에서 쓰이며 어떤 사실의 기록에 대해 뜻을 명확하게 나타내어주는 한 요소이고, 이것은 해당문장이 기록문장임을 나타내준다. 이는 질의-응답 시스템에서 정답 추출의 중요한 단서로 사용될 수 있다. 질의-응답 시스템은 크게 질의를 분석하는 부분과 정답 문서를 찾는 부분으로 나뉘며, 질의 분석을 통하여 기록부사로 지역정보 그리고 정답유형을 결정한 후 이를 이용하여 후보 문서를 검색, 추출하고 정의문 규칙과 개체명 태깅에 의하여 정답을 추출하게 된다.

  • PDF

Record Information Question-Answering System Using Question Rules (질문 규칙을 이용한 기록정보 질의-응답 시스템)

  • Oh, Su-Hyun;Ahn, Young-Min;Park, Hee-Geun;Lee, Chung-Hee;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.228-232
    • /
    • 2006
  • 본 논문에서는 기네스 기록정보, 즉 기록적 가치가 있는 기록정보에 대한 질의를 처리하는 시스템에 대하여 기술한다. 기록정보 질의의 경우 일반적으로 정형화된 형태로 나타나며 이 형태를 규칙으로 사용하여 질의에 해당되는 정답을 추출하게 된다. 기록적 가치가 있는 문장에서 해당 문장이 기록 문장임을 나타내어 주는 부사를 기록부사로 정의하고, 예로 가장 제일, 최고의, 최대의, 최소의, 최초의, 최초로 등을 들 수 있다. 기록정보 질의의 경우 용언의 포함여부에 따라 기록부사는 두 가지 유형으로 분류된다. 기록부사는 질의문 내의 지역정보 및 정답유형과 함께 정답 추출의 중요한 요소로 사용되고, 용언정보는 기록 부사의 유형, 질의문 내의 용언 포함 여부에 따라 정답 추출의 요소로 결정되어진다. 제안한 시스템은 질의분석을 통하여 정답 추출을 위한 단서를 찾고 이를 이용하여 후보 문서와 후보 문장을 검색한 후 정답 추출 규칙을 이용하여 정답을 추출하게 된다.

  • PDF

Abductive Reasoning based Question Answering System for Yes/No Quiz (가추적 추론에 기반한 가부형(O/X 퀴즈) 질의응답 시스템)

  • Heo, Jeong;Lee, Hyung-Jik;Bae, Yong-Jin;Kim, Hyun-Ki;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.46-49
    • /
    • 2015
  • 본 논문에서는 가추적 추론에 기만한 질의응답 기술을 활용하여 O/X 퀴즈 질문에 대한 질의응답을 수행하는 기술에 대해서 소개한다. O/X 퀴즈를 기존의 질의응답 기술에 적용하기 위해서는 O/X 퀴즈 문장을 단답형 질문으로 재생성해야 한다. 질문재생성에서는 단답형 질문으로 변환하기 위해 특정 어휘(또는 개체나 구)를 <지시대명사>나 <지시관형사+명사>로 대체한다. 이때 대체된 어휘는 정답후보로 인식된다. 단답형질문과 정답후보의 쌍으로 구성된 정답가설은 근거검색과 유사도에 기반한 신뢰도 값 계산을 통해, O/X를 결정하게 된다. 실험을 통해, 신뢰도 임계값이 0.45일 때 정확률이 69.17%를 보였다.

  • PDF

Question-Answering System using the Superlative Words (최상급 단서 어휘를 이용한 질의-응답시스템)

  • Park, Hee-Geun;Oh, Su-Hyun;Ahn, Young-Min;Seo, Young-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.140-143
    • /
    • 2006
  • In this paper, we describe a question-answering system which extracts answers for the superlative questions which include the superlative words such as "the most", "the best", "the first", "the largest", "the least", and so on. The superlative questions are composed of four main components and others. Four main components are the superlative word, answer type, regional information, and a verb modified by the superlative word. We classify the superlative words into two types as to whether the verb has to be needed to be a question or not. The superlative word, answer type and regional information are essential elements to extract answer for all superlative questions. But the verb may be an essential element by the type of superlative word. Our system analyzes input question, and finds four main components of the superlative question. Also, our system searches relative documents and candidate sentences using them, and extracts answers from candidate sentences. Empirical result shows that our system has high precision and high recall for the superlative questions.

  • PDF

Design of a QA System based on Information Retrieval (정보검색기반 질의응답 시스템 설계)

  • Kim, MinKyoung;Ahn, HyeokJu;Kim, Harksoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.816-818
    • /
    • 2015
  • 본 논문에서는 질의유형을 통한 검색기반 질의응답 시스템을 구현하기 위한 설계방법을 제안한다. 이를 위해 위키피디아 문서의 링크 데이터를 이용하여 색인 대상문서와 데이터베이스를 구축하는 색인 모델과 2-포아송 모델을 이용하여 얻은 문서들을 색인 데이터베이스를 통해 필터링하여 정답 후보문장을 추출하는 검색모델, 키워드 패턴 매칭 기반 질의유형 분류 모델을 설계하였다.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.