• 제목/요약/키워드: 정답 후보 문장 검색

검색결과 7건 처리시간 0.023초

의학문서 질의응답을 위한 정답 스닛핏 검색 (Answer Snippet Retrieval for Question Answering of Medical Documents)

  • 이현구;김민경;김학수
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.927-932
    • /
    • 2016
  • 온라인 의학 문서의 폭발적 증가와 함께 질의응답 시스템에 대한 필요성이 늘어나고 있다. 최근에는 기계학습에 기반 한 질의응답 모델들이 다양한 영역에서 좋은 결과를 보여 왔다. 그러나 의학 영역에서 질의응답 모델들은 학습 데이터의 부족으로 인해 여전히 정보 검색 기술에 기반을 두고 있다. 본 논문에서는 다양한 정보검색 기술에 기반 한 의학문서 질의응답용 정답 스닛핏 검색 모델을 제안한다. 제안 모델은 먼저 클러스터 기반 검색 기술을 이용하여 의학 문서로부터 많은 정답 후보 문장을 검색한다. 그리고 다양한 문장 검색 기술들에 기반 한 정답 후보 문장 재순위화 모델을 사용하여 신뢰성 있는 정답 스닛핏을 생성한다. BioASQ 4b 데이터를 이용한 실험에서 제안 모델은 기존 모델보다 좋은 성능(MAP 0.0604)을 보였다.

기네스 기록 부사와 정답 유형을 이용한 기록문장에서의 정답 추출 (Answer Extraction in Record Sentence using Guinness Record Adverb and Answer-Type)

  • 오수현;안영민;이충희;서영훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.1-3
    • /
    • 2006
  • 본 논문에서는 기네스 기록과 같은 기록정보 즉, 기록적 가치가 있는 문장에 대한 질의가 들어왔을 경우기록 부사와 정답 유형을 이용하여 정답을 추출하는 시스템에 대해 기술한다. 기록정보는 역사적이고 사실적인 내용으로, 기록부사틀 포함하는 문장을 말한다. 기록부사는 기록정보 내에서 쓰이며 어떤 사실의 기록에 대해 뜻을 명확하게 나타내어주는 한 요소이고, 이것은 해당문장이 기록문장임을 나타내준다. 이는 질의-응답 시스템에서 정답 추출의 중요한 단서로 사용될 수 있다. 질의-응답 시스템은 크게 질의를 분석하는 부분과 정답 문서를 찾는 부분으로 나뉘며, 질의 분석을 통하여 기록부사로 지역정보 그리고 정답유형을 결정한 후 이를 이용하여 후보 문서를 검색, 추출하고 정의문 규칙과 개체명 태깅에 의하여 정답을 추출하게 된다.

  • PDF

질문 규칙을 이용한 기록정보 질의-응답 시스템 (Record Information Question-Answering System Using Question Rules)

  • 오수현;안영민;박희근;이충희;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.228-232
    • /
    • 2006
  • 본 논문에서는 기네스 기록정보, 즉 기록적 가치가 있는 기록정보에 대한 질의를 처리하는 시스템에 대하여 기술한다. 기록정보 질의의 경우 일반적으로 정형화된 형태로 나타나며 이 형태를 규칙으로 사용하여 질의에 해당되는 정답을 추출하게 된다. 기록적 가치가 있는 문장에서 해당 문장이 기록 문장임을 나타내어 주는 부사를 기록부사로 정의하고, 예로 가장 제일, 최고의, 최대의, 최소의, 최초의, 최초로 등을 들 수 있다. 기록정보 질의의 경우 용언의 포함여부에 따라 기록부사는 두 가지 유형으로 분류된다. 기록부사는 질의문 내의 지역정보 및 정답유형과 함께 정답 추출의 중요한 요소로 사용되고, 용언정보는 기록 부사의 유형, 질의문 내의 용언 포함 여부에 따라 정답 추출의 요소로 결정되어진다. 제안한 시스템은 질의분석을 통하여 정답 추출을 위한 단서를 찾고 이를 이용하여 후보 문서와 후보 문장을 검색한 후 정답 추출 규칙을 이용하여 정답을 추출하게 된다.

  • PDF

가추적 추론에 기반한 가부형(O/X 퀴즈) 질의응답 시스템 (Abductive Reasoning based Question Answering System for Yes/No Quiz)

  • 허정;이형직;배용진;김현기;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.46-49
    • /
    • 2015
  • 본 논문에서는 가추적 추론에 기만한 질의응답 기술을 활용하여 O/X 퀴즈 질문에 대한 질의응답을 수행하는 기술에 대해서 소개한다. O/X 퀴즈를 기존의 질의응답 기술에 적용하기 위해서는 O/X 퀴즈 문장을 단답형 질문으로 재생성해야 한다. 질문재생성에서는 단답형 질문으로 변환하기 위해 특정 어휘(또는 개체나 구)를 <지시대명사>나 <지시관형사+명사>로 대체한다. 이때 대체된 어휘는 정답후보로 인식된다. 단답형질문과 정답후보의 쌍으로 구성된 정답가설은 근거검색과 유사도에 기반한 신뢰도 값 계산을 통해, O/X를 결정하게 된다. 실험을 통해, 신뢰도 임계값이 0.45일 때 정확률이 69.17%를 보였다.

  • PDF

최상급 단서 어휘를 이용한 질의-응답시스템 (Question-Answering System using the Superlative Words)

  • 박희근;오수현;안영민;서영훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 춘계 종합학술대회 논문집
    • /
    • pp.140-143
    • /
    • 2006
  • 본 논문에서는 최상급 질의에 대한 정답을 추출하는 질의-응답시스템에 대해 기술한다. 최상급 질의란 "가장", "제일", "처음", "최고의", "최대의", "최소의", "최초로", "최초의" 등의 최상급 단서 어휘를 포함하고 있는 질의를 말한다. 최상급 질의는 4가지 주요 성분-최상급 단서 어휘, 정답유형, 지역정보, 용언-과 기타 문장 성분으로 구성된다. 이 중 최상급 단서 어휘는 자신이 수식하는 용언을 반드시 필요로 하느냐에 따라 두 가지 유형으로 나뉘며, 이는 정답 추출을 위한 필수요소를 결정하는 기준이 된다. 모든 최상급 질의에 대해 최상급 단서 어휘, 정답유형, 지역정보는 정답을 추출하기 위한 필수요소이지만, 용언은 최상급 단서 어휘의 유형에 따라 필수요소로 결정된다. 본 논문의 시스템은 최상급 질의 분석을 통하여 정답 추출을 위한 필수요소를 찾고, 이를 이용하여 후보 문서와 후보 문장을 검색한 후, 정답을 추출한다. 실험 결과 최상급 질의에 대한 높은 정확률과 재현율을 보였다.

  • PDF

정보검색기반 질의응답 시스템 설계 (Design of a QA System based on Information Retrieval)

  • 김민경;안혁주;김학수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.816-818
    • /
    • 2015
  • 본 논문에서는 질의유형을 통한 검색기반 질의응답 시스템을 구현하기 위한 설계방법을 제안한다. 이를 위해 위키피디아 문서의 링크 데이터를 이용하여 색인 대상문서와 데이터베이스를 구축하는 색인 모델과 2-포아송 모델을 이용하여 얻은 문서들을 색인 데이터베이스를 통해 필터링하여 정답 후보문장을 추출하는 검색모델, 키워드 패턴 매칭 기반 질의유형 분류 모델을 설계하였다.

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.