• Title/Summary/Keyword: 접힘결함

Search Result 4, Processing Time 0.019 seconds

A Study for Preventing Folding Defect of the Common Rail Pipe in Heading Process (커먼레일 파이프 헤딩공정의 접힘결함 방지에 관한 연구)

  • Song, Myung-Jun;Woo, Ta-Kwan;Jung, Sung-Yuen;Hur, Kwan-Do;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • With the latest automobile technology, though the third generation common rail system requires high injection pressures up to 1,800bar, the next generation diesel engine is expected to require more higher pressures than the third generation. The common rail pipe requires higher strength because it is one of the parts in the common rail system, which is influenced directly by fuel under high pressure. Preform design is very important for preventing head of the common rail pipe from folding in the heading process. In this study, die angle, curvature, outer diameter of die and length of trapped part are selected as main parameters to obtain best preform shape minimizing radius of folding. Therefore optimal design is carried out by finite element analysis and Taguchi method through main parameters. Results of the finite element analysis have good agreements with those of the experiments in the actual field.

Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws (초소형 나사 단조시 접힘결함 향상을 위한 유한요소해석)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2015
  • Recent trends to reduce the size of mobile electronics products have driven miniaturization of various components, including screw parts for assembling components. Considering that the size reduction of screws may degenerate their joining capabilities, the size reduction should not be limited to the thread region but should be extended to its head region. The screw head is usually manufactured by forging in which a profiled punch presses a billet so that plastic deformation occurs to form the desired shape. In this study, finite element (FE) analysis was performed to simulate the forging process of a subminiature screw; a screw head of 1.7 mm diameter is formed out of a 0.82 mm diameter billet. The FE analysis result indicates that this severe forging condition leads to a generation of folding defects. FE analyses were further performed to find appropriate punch design parameters that minimize the amount of folding defects.

Design of Cold Forging Process of Micro Screw for Mobile Devices (모바일 기기용 초소형 나사의 냉간 단조 공정 설계)

  • Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3692-3697
    • /
    • 2015
  • A screw is a type of fastener characterized by a helical ridge known as thread. The demands for screws with the miniaturization and weight reduction are increasing for the trend of small size of mobile devices. The successful designs of mold and process are very important to obtain screws with good mechanical properties and high precision. In this study, the design of cold forging process of micro screw was carried out by using finite element method. In particular, in order to investigate the effects of die geometries and friction, design of experiment method was adopted and it was revealed that the friction was the dominant factor of folding defects. From these results, the design of die was modified and experiments were carried out with the modified die. From the experimental results, it was found that the folding defects disappeared.

A Study on Real Time Control of Resin Transfer Molding (RTM 공정의 실시간 제어에 관한 연구)

  • Jeon Young Jae;Um Moon Kwang;Byun Joon Hyung;Lee Woo Il
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2005
  • In resin transfer molding(RTM), race-track effects and non-uniform fiber volume fraction may cause undesirable resin flow patterns and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to reduce these unfavorable effects is proposed. This control rule is accomplished by means of the permeability mapping and pressure regulation. Through numerical simulations, the validity of the proposed scheme is demonstrated.