• Title/Summary/Keyword: 접촉 응력 해석

Search Result 347, Processing Time 0.027 seconds

Current Research on the Stress Analysis of Artificial Knee Joint (인공 슬관절의 응력 해석에 관한 연구)

  • Lee Jae-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, the current research for the biomechanics of artificial knee joints including experiments and stress analysis is surveyed and Introduced. The knee joint is the most large and the motion is very complicated, so the design of artificial joint is difficult and most research Is being done abroad. Up to date, most products are foreign products and Imported here and the gap between here and advanced countries of the technical and capability for the design and manufacturing is too deep to follow. So, the contents of papers in this area including the most excellent results are introduced. And the preliminary research on the contact stress analysis of the joints is present.

  • PDF

An analytic study on the bond stress between concrete and steel tube in CFT tublar column (충전원형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Kang, Joo-Won;Park, Sung-Moo;Kim, Youn-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) tublar column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled tublar column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling ell contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option. After yielding of models, analytic results is less than that of experimental results.

  • PDF

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

Rail surface inclined crack growth analysis considering periodic grinding (주기적 마모를 고려한 레일표면 경사균열 진전해석)

  • Jun, Hyun-Kyu;You, Won-Hee;Ham, Young-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.493-498
    • /
    • 2011
  • 구름접촉피로는 차륜과 레일의 반복적인 접촉으로 인하여 발생하는 표면손상현상으로 점차 증가하는 레일손상 중 하나이다. 접촉마모 및 주기적 그라인딩보다 균열의 성장속도가 더 빨라 균열진전이 시작되는 최소균열크기(minimum crack size for growth)는 레일의 파괴방지 및 유효한 유지보수전략을 수립하는데 기초자료로 활용된다. 본 연구에서는 최소균열크기를 예측하기 위하여 차륜레일의 접촉에 영향을 미치는 주요 파라미터를 변화시키면서 최소균열크기의 변화를 살펴보았다. 이를 위하여 Fletcher와 Kapoor의 "2.5D"모델을 적용한 시뮬레이션 소프트웨어를 개발하였으며, 최대접촉하중(1174MPa), 표면마찰계수(0.1, 0.2, 0.3 and 0.4), 잔류응력, 접촉에 의한 표면마모(1.0nm/cycle), 그라인딩량(0.3mm/10MGT)을 파라미터로 하여 해석을 수행하였다. 해석결과 최소균열크기는 해석조건에 따라 1.41-1.95mm로 계산되었다.

  • PDF

Finite Element Analysis of Contact Behavior Characteristics in LPG Filling Unit Depending on Multi-ball/Cylinder Rolling Friction Motions (LPG 충전기에서 다수 볼-실린더의 구름마찰운동에 따라 달라지는 접촉거동특성에 관한 유한요소해석)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, the contact stress and friction force between multi-balls and rolling friction contact surfaces of two cylinders have been presented using a finite element analysis. The multi-balls for a rolling friction motion may be contacted with a reciprocating mechanism of a parallel cylinder and a misaligned cylinder in a LPG filling unit. The FEM computed results indicate that SiC ceramic and SUS 304 balls show a high contact stress and friction force on the contact spot of rolling balls. But the PEEK balls show a low contact stress and friction loss due to a high flexibility of a PEEK polymer. In this study, we may recommend SiC and SUS 304 balls for high compressive loadings between a multi-ball and a cylinder contact mechanisms and PEEK balls for a low compressive force. And the misalignment between two cylinders should be restricted for a low contact stress and friction loss, especially.

  • PDF

An Analysis of Detachment Mechanism of Gecko Adhesion System using Finite Element Method (유한요소법을 이용한 게코 접착 시스템의 분리 메커니즘에 대한 해석)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.550-553
    • /
    • 2010
  • 본 논문에서는 seta와 spatula로 구성된 게코(gecko) 접착 시스템의 해석을 위한 새로운 adhesive beam contact model을 제시한다. adhesive contact 해석에 있어서 기존의 JKR model은 nano pillar와 같은 형태의 접촉방식의 해석에는 매우 유용하지만, seta와 같이 보(beam)의 형상을 가지는 구조물의 접촉방식의 해석에는 부적합하다. 따라서 본 연구에서는 seta와 같은 보의 형상을 가지는 접촉 시스템의 해석을 위해 adhesive beam contact model을 제시하고, 유한요소 해석을 통하여 접촉면에서의 불균일한 응력분포 상태가 분리 메커니즘에 미치는 영향에 대한 해석 결과를 제시한다. 또한 spatula의 기하학적 형상과 보의 접촉각(contact angle)등이 seta adhesion system의 분리 메커니즘(detachment mechanism)에 미치는 영향에 대한 결과를 제시한다.

  • PDF

A study on improved analytic method for the bond stress between concrete and steel tube in CFT column (CFT기둥에서 강관과 콘크리트 부착응럭의 해석기법 개선에 관한 연구)

  • Seok, Keun-Yung;Ju, Gi-Su;Choi, Joon-Young;Chae, Seoung-Hun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.83-90
    • /
    • 2007
  • Buildings become high and large. CFT(Concrete Filled steel Tube) columns have been developed to manage effectively that loads which columns support and cross sections of columns are increased. Because CFT column is the composite structure made of two different materials, many researches have been performed to look into mechanical behaviors. This study is an analytic study about bond stress on interface between concrete core and steel tube in circular and rectangular CFT columns. ABAQUS/Standard Version 5.8 is used to analyze bond stress by bond form and position of shear-connector, and improved analystic method about mechanical characters on interface is suggested.

  • PDF

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.

Stress Analyses of the Gimbal Bellows for a Lox Pipe (산화제 배관 김발 주름관 응력 해석)

  • Yoo, Jae-Han;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.477-480
    • /
    • 2011
  • The stress analyses of the 'U'-shaped multi-ply reinforced gimbal bellows under high pressure and rotational displacement loadings are performed at the room and cryogenic temperatures. The bellows are used for the Lox pipe line which connects the combustion chamber with the turbopump of a liquid rocket engine. The distributions of the stress, the strains and the contact pressures are obtained from the finite element analysis considering the geometric non-linearities of the contacts between the plies and the material one of the isotropic plasticity. Those are compared with the stress results from EJMA (Expansion Joint Manufacturing Association) standard. Also, the effects of the operating temperature and the reinforcing ring on the stresses are investigated.

  • PDF

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF