• Title/Summary/Keyword: 접촉역학

Search Result 325, Processing Time 0.027 seconds

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

Tracing of the Behavior of Flood Wave Propagation Using LSPIV (LSPIV를 이용한 홍수파의 거동 추적)

  • Kim, Young-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1774-1778
    • /
    • 2008
  • 유량 환산에 이용되는 수위-유량 관계곡선식은 하천의 흐름을 정상 등류상태로 가정하고 유속계를 하천에 투입하여 년간 정해진 횟수의 유량측정을 실시하여 이로부터 갱신하여 작성하고 있다. 평수기에는 이렇게 기기를 이용하여 유량측정이 가능하지만 홍수기나 갈수기에는 접촉식 유속계를 이용한 하천유량 측정이 불가능한 실정이다. 홍수기에는 기기 손상과 관측자의 안전이 위협받는 실정이고, 갈수기에는 유속이 너무 느려서 (0.1 m/s 이하) 프로펠러 유속계의 경우 유속의 정확한 관측이 힘들다. 또한 전지구적 빈번한 이상기후의 현실정에서 가장 중요한 기초 수문자료인 홍수량의 정확한 측정 자료는 많지 않다. 홍수유량을 측정하기 위해서 현재에도 기존의 봉부자를 이용하거나 유비쿼터스 센서를 장착한 봉부자를 이용하는 유량측정 기법이 향해지고 계속적으로 소개되고 있는 실정이지만 봉부자의 특성상 정확한 유량을 계산하기에는 어려움이 많다. 현재 선진국에서는 흐름과 비접촉식 방법을 이용한 하천유량측정 방법이 지난 10 여년간 꾸준이 연구되어 왔다. 그중 대표전인 것이 전자파를 이용한 방법과 영상해석에 의한 방법이다. 전자의 경우 국내에서는 수자원공사에서 10년 이상 연구 개발하여 상품화 시킨바 현업에서 이를 이용하여 홍수유량측정을 실시하고 있다. 후자의 방법은 유체역학 분야에서 흐름해석에 주로 이용되어지던 PIV(particle image velocimetry) 기법을 하천과 같이 대규모의 흐름영역에 적용가능하도록 개발된 기술로 LSPIV (large-casle particle image velocimetry)라 불리우는 기술이다. 본 연구에서는 미국 Iowa 대학에서 개발한 LSPIV를 이용하여 홍수파의 진행시 수위와 유량의 두 변수 사이에 나타나는 Loop rating curve의 이론적인 관계를 하천현장에서 일정시간 간격으로 실측을 통하여 파악하고자 하였다. 현장실험을 위한 대상지점으로 미국 Iowa주 Coralville 시내 Clear Creek의 USGS (US Geologival Survey) 수위관측소 지점을 선택하여 본 연구에서 실시한 유량측정 결과의 비교가 가능토록 하였다. LSPIV는 그 특성상 야간에는 적용하는데 어려움이 있어 아침시간부터 해가 지기 직전까지의 자연채광 조건의 영상취득이 가능한 시간대에서 표면유속을 측정하였고 이에 수심평균유속환산계수를 적용하여 유량을 계산하였다. 강우의 발생으로 인한 홍수파의 진행시 총 43회의 유량을 측정하였는바 이를 이용하여 이 지점의 수위-유량 관계식과 비교한 결과 거의 일치하는 결과를 나타냈다. 특히 홍수파의 진행시 고수위 영역에서의 측정한 결과는 수위의 상승기에는 최고로 7.5% 까지 측정유량이 수위-유량관계식에서 계산한 유량보다 컸으며, 수위의 하강기에는 반대로 최고 5.4% 정도까지 측정유량이 수위-유량관계식에서 계산한 유량보다 작게 나타났다. 또한 최대유량의 발생시기는 최고수위 발생직전의 수위라는 것이 파악되었다. 이러한 경향은 수위-유량 관계곡선의 이론과 잘 일치하는 것이다.

  • PDF

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

Dissolution Monitoring of Geo-Soluble Mixtures (지반 소실 혼합재의 용해과정 모니터링)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Sim, Young-Jong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.111-122
    • /
    • 2009
  • Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

Aerodynamic Characteristics, Vocal Efficiency, and Closed Quotient Differences according to Fundamental Frequency Fixation (음도 고정 유무에 따른 공기역학, 음성효율성 및 성대접촉률 차이)

  • Kim, Jaeock
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The aerodynamic characteristics (subglottal pressure (Ps) and mean airflow rate (MFR)), fundamental frequency (Fo), intensity (I), vocal efficiency (VE), and closed quotient (CQ) were compared during a sustained vowel /o/ sound under three conditions: in a comfortable loudness and pitch level (condition 1), in a maximum loudness level with a fixed pitch (condition 2), and in a maximum loudness level without a fixed pitch (condition 3). Also, multiple regression analyses were done to measure the aerodynamic characteristics affect on the VE and the CQ in each condition. The results showed the Fo, Ps, MFR, VE, and CQ increased as I increased with and without fixed pitch. Most notably, VE in condition 3 was the highest of all the conditions, but CQ was not very high. By the results of multiple regression analysis, VE was significantly affected by I and Ps in all conditions; Fo was the other main key for affecting VE in high pitch. However, none of the aerodynamic characteristics significantly affected CQ. As I increases, Fo should be increased by increasing Ps and VE. Therefore, researchers should consider and specify an a priori to Fo, Ps, and I when measuring VE to examine the complex and delicate vocal mechanism.

Analysis of Mackerel Sorting Performance for Development of Automatic Mackerel Grader (고등어 자동 선별기 개발을 위한 고등어 선별 성능 분석)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Choi, Myung Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.115-121
    • /
    • 2016
  • A mackerel grader is a machine for sorting mackerel according to size. In this study, the dynamic deflection and optimal sorting simulation of a mackerel grader was carried out by using multi-body dynamics. To analyze the dynamic deflection of the roller, RecurDyn, a multi-body dynamics analysis program, was used. The dynamic deflection of the roller pipe was analyzed according to the inclination of the roller pipe. When the inclination of the roller pipe was 30 degrees, the roller indicated the maximum deflection of about 6.3 mm at the center of the mass. To simulate the mackerel sorting, the mackerel grader machine was modeled, and the contact simulation between the mackerel model and the rotating roller pipe was carried out. When the inclination of the roller frame was 7 degrees, the mackerel grader indicated optimal sorting performance.

A Study on the Prediction of Bone Remodeling of Plated-Human Femur using Stress Analysis (응력해석에 의한 골절판이 부착된 인체 대퇴골의 골재형성 예측에 관한 연구)

  • Kim, Hyun-Su
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.111-125
    • /
    • 1995
  • The stress distribution of bone is altered by the rigid bone plate, sometimes resulting in unfavorable osteoporosis. The rigidity and the biocompatibility are important factors for the design of prosthesis, however, it is also necessary to consider the effect on the bone remodeling. In this paper, it is attempted to establish an approximate and simple method to predict the trend of the configuration of surface bone remodeling upon a bone plate using stress analysis. Thus, three dimensional finite element model of plated-human femur is generated and simulated. In addition, the stress difference method (SDM) is introduced and attempted to demonstrate the configuration of surface bone remodeling of the plated-human femur.

  • PDF

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

Biosorption and Flotation of Lead and Chromium using Waste Activated Sludge (폐 활성슬러지를 이용한 납과 크롬의 생체흡착 및 부상)

  • Lee, Chang-Han
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.444-450
    • /
    • 2009
  • We have investigated biosorption kinetics and equilibrium of $Pb^2+$ and $Cr^2+$ using waste sludge, and separation efficiency of waste sludge by dissolved air flotation was evaluated in the various A/S ratio. The biosorption capacity and contact time were shown as a simulation of biosorption equilibrium and kinetics models. Biosorption equilibrium of the $Pb^2+$ and $Cr^2+$ onto the waste sludge could be fitted by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan equation. The kinetics could be fitted by a pseudo-second-order rate equation more than a pseudo-first-order rate equation. The separation efficiency of waste sludge using DAF was kept above 90%.