• Title/Summary/Keyword: 점 용접부 모델링

Search Result 6, Processing Time 0.023 seconds

Performance Evaluation for the Methods of Spot Weld Modeling Considering Durability (피로 해석을 고려한 점용접부 모델링 기법의 성능 평가)

  • Byun Hyung-Bae;Lee Byung-Chai;Joo Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1153-1160
    • /
    • 2005
  • Many methods of spot weld modeling have been developed to increase efficiency and guarantee the robustness fer the CAE analysis. In this research they are introduced and the performance is compared in a viewpoint of stiffness and durability. For evaluating the performance a multi-spot welded specimen as well as two single welded specimen is used. The results show that the CWELD element considering 'patch to patch' is stiffer than other modeling methods in stiffness and more conservative in durability. It also offers simple modeling and since it is much easier to maintain the orrhogonality of the BAR element expressing a nugget, we can obtain more exact reaction forces and moments in a nugget. Therefore the CWELD element is the most excellent in the assessment of durability.

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF

A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration (차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구)

  • Sung, Young-Suk;Kang, Min-Seok;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Evaluation of the Finite Element Modeling of Spot-Welded Region for Crash Analysis (충돌해석에서의 점용접부 모델링에 따른 하중특성 평가)

  • Song, Jung-Han;Huh, Hoon;Kim, Hong-Gee;Kim, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.174-183
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The role of this rigid beam is simply to transfer the load across the welded components. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. The load calculated from the precise finite element model of the spot-welded region considering the residual stress due to the thermal history during the spot welding procedure is regarded as the reference value and the value of the load is compared with the one obtained from the spot-welded model using the rigid beam with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

Improvement of Fatigue Life with Local Reinforcement for Offshore Topside Module during Marine Transportation (해양플랫폼 탑사이드 모듈의 해상 운송 시 국부 보강을 통한 피로 수명 개선에 관한 연구)

  • Jang, Ho-Yun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.387-393
    • /
    • 2021
  • In this study, finite element analysis was performed to evaluate a method of increasing the fatigue life of the pipe connection structure commonly used in the topside structure of offshore platforms. MSC Patran/Nastran, a commercial analysis program, was used, and the critical structural model was selected from the global analysis. To realize the stress concentration phenomenon according to the load, modeling using 8-node solid elements was implemented. The main loads were considered to be two lateral loads and a tensile load on a diagonal pipe. To check the hotspot stress at the main location, a 0.01 mm dummy shell element was applied. After calculating the main stress at the 0.5-t and 1.5-t locations, the stress generated in the weld was estimated through extrapolation. In some sections, this stress was observed to be below the fatigue life that should be satisfied, and reinforcement was required. For reinforcement, a bracket was added to reduce the stress concentration factor where the fatigue life was insufficient without changing the thickness or diameter of the previously designed pipe. Regarding the tensile load, the stress in the bracket toe increased by 23 %, whereas the stress inside and outside of the pipe, which was a problem, decreased by approximately 8 %. Regarding the flexural load, the stress at the bracket toe increased by 3 %, whereas the stress inside and outside of the pipe, which was also a problem, decreased by approximately 48 %. Owing to the new bracket reinforcement, the stress in the bracket toe increased, but the S-N curve itself was better than that of the pipe joint, so it was not a significant problem. The improvement method of fatigue life is expected to be useful; it can efficiently increase the fatigue life while minimizing changes to the initial design.