• Title/Summary/Keyword: 점화시험

Search Result 211, Processing Time 0.018 seconds

Cold Flow and Ignition Tests for Technology Demonstration Model of 75-Tonf Thrust Chamber (75톤급 연소기 기술검증 시제 수류시험 및 점화시험)

  • Kim, Mun-Ki;Han, Yeoung-Min;Kim, Jong-Gyu;Ahn, Kyu-Bok;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Cold flow and ignition tests were performed for a technology demonstration model of a 75-tonf thrust chamber which is a candidate liquid rocket engine for a next Korea Space Launch Vehicle. The test facility was modified to support the new concepts of the thrust chamber such as ignition system, film cooling and LOx leading supply. The hydrodynamic characteristics of the supply pipelines, thrust chamber and igniter as well as the filling time of the propellants were obtained through the cold flow tests on the LOx and kerosene and the ignition cyclogram was determined using the results. The ignition test was successfully accomplished according to the cyclogram and therefore, a basic information was obtained for further hot firing tests.

  • PDF

Cold Flow and Ignition Tests for a 75-tonf Kerosene-Cooled Liquid Rocket Engine Thrust Chamber (75톤급 액체로켓엔진 케로신 냉각 연소실 수류시험 및 점화시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.25-28
    • /
    • 2010
  • The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.

  • PDF

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

Evaluation of Ignition Performance of Green Hypergolic Propellant (친환경 접촉점화 추진제 점화 성능 평가)

  • Sunjin Kim;Minkyu Shin;Jeongyeol Cha;youngsung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Hypergolic propellants, which can ignite themselves without an ignition source, are difficult to handle due to their corrosiveness and toxicity. Therefore, it is necessary to develop green hypergolic propellants with little or no toxicity. In this study, basic research on green hypergolic ignition propellants was conducted. With 95% hydrogen peroxide as an oxidizer and CNU_HGFv1 as a fuel, ignition and combustion characteristics of propellants were evaluated through a drop test, an ignition test, and a combustion test. As a result of the drop test, the ignition delay time was 9.7 ms. It was 27 ms in the ignition test, which was fast enough to be used as a propellant. As a result of the combustion test, a combustion efficiency of 95.4~98.1% was achieved at about 11.7 bar. It was confirmed that fast and stable combustion was possible without hard start or combustion instability.

Development of Arm Fire Device for Solid Rocket (고체 추진기관 점화안전장치 개발)

  • Jang Seung-Gyo;Jung Jin-Suk;Kim In-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • The performance test result of the Arm Fire Device(Ignition Safety Device) for solid rocket which prevents accidental ignition was described. The results of the closed bomb test and the igniter test of the classical mechanical arm fire device and the advanced electro-mechanical arm fire device were presented, and according to the igniter test result it was realized that the electro-mechanical arm fire device has an advantage in aspect of the action time.

  • PDF

Development and Performance Test of the Kick Motor Igniter (킥모터 점화기 개발 및 성능 시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.190-200
    • /
    • 2007
  • A pyrogen type igniter was designed to satisfy the requirements of KSLV-I Kick Motor system. To insure the reliability of the igniter before the production of the flight model, we have been performed the structure, environmental, combustion tests. The hydraulic test was carried out to confirm the strength of the components of the igniter. The shock and vibration tests were considered to check whether the igniter operates normally under the severe environmental condition. The combustion tests were also performed to understand the ignition characteristics with the variation of initial condition. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test.

  • PDF

B-KNO$_3$ 점화제의 노화 현상 분석

  • 장승교;류병태
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.14-14
    • /
    • 1997
  • 추진제의 노화 못지 않게 점화제의 노화도 추진 기관 성능에 큰 영향을 미칠 것으로 예측된다. 따라서 10년 이상 경과된 활성 모터에서 점화기를 분해하여 노화에 의한 점화제의 성능 변화를 알아보았다. 분석에 사용한 점화제는 II-D Bi-Convex형상의 B-KNO$_3$ 펠렛으로 열량, 자동 점화온도, 기계적 물성의 변화를 관찰하였고, 밀폐 용기(Closed bomb)에서 연소시험을 통하여 노화에 따른 점화알약의 압력변화를 측정하고 이론 값과 비교하였다. 또한 비활성 모타를 이용한 연소시험으로 점화기의 점화지연시간, 최대 압력, 최대 압력 도달시간 등을 측정하고 이론식과 비교하여 노화에 의한 변화를 관찰하였다.

  • PDF

Flow Coefficient Experiments of a Hypergolic Igniter with Rupture Disc Ends (파열판 방식 연소기 점화기의 유량계수 시험)

  • Yoo, Jaehan;Lee, Joongyoup;Lee, Soo Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Many of the liquid rocket engines use a hypergolic igniter with rupture disc ends located in the combustion chamber ignition line. In this study, the flow coefficient tests of the igniter, which have a solenoid valve upstream, were performed. The tension-type rupture discs for radial and circumferential scores and the igniter with them were tested using water at room temperature. The effects of the score, flow rate, the disc thickness, gas pocket and the solenoid valve on the coefficient were analyzed.

The implementation of the firing control system considering a flight sequence control technique (비행시퀀스제어기법을 적용한 점화통제시스템 구현)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-48
    • /
    • 2008
  • One of main functions of the firing control system applied to a rocket propulsion test has been to provide electric current for ignition of a solid rocket motor. This paper describes the design and implementation of an enhanced firing control system for ground propulsion test that can also control and verify various types of squib events and flight sequences.

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.