• Title/Summary/Keyword: 점화시기제어

Search Result 32, Processing Time 0.02 seconds

A study on the development of the electronic control system for the gasoline engine. (가솔린 엔진용 전자제어 시스템 개발에 관한 연구)

  • Yoon, Hong-Jung;Kim, Nam-Wook;Kim, Yong-Deak
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1203-1205
    • /
    • 1987
  • 가솔린 엔진용 전자 제어 에뮬레이션 시스템은 엔진의 운전 상태를 알려 주는 각종 센서로 감지한 정보를 A/D변환기를 통해 마이크로프로세서에 입력시키고, 이 정보를 이용하여 운전 상태를 분석한 후 엔진이 푤요로 하는 연료량, 점화시기, 배기가스의 재순환량, 공회전수 등을 전자적으로 제어하여 엔진의 최적제어를 실현시킴으로서 연료소비율 및 배기가스 중 공해물질 함량을 감소시키기 위한 장치이다.

  • PDF

Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control (최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF

A Impact Study on Combustion Characteristics of the Engine by Changing the Gasoline Properties (휘발유 물성변화가 엔진의 연소특성에 미치는 영향 연구)

  • Noh, Kyeong-ha;Im, Sang-bin;Lee, Min-ho;Kim, Ki-ho;Ha, Jong-han
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • This study examined combustion characteristics by selecting the fuel which have a different physical properties compared to gasoline in order to examine the effects of vehicle performance and environment depending on the physical properties. The experiment examined the combustion characteristic in the optimum ignition timing according to the physical properties change and the lean burn by performing control about ignition timing and air-fuel ratio for each fuel, and it was also evaluated the exhaust gas according to the experiment. We used a single-cylinder engine for the experiment, and tested for gasoline properties change by selecting a fake fuel that beyond the fuel quality standards in 석대법. As a result, in the case of the selected fuel showed a difference in Octane and distillation characteristics, vapor pressure and it was also found to unstable combustion, and leads to a large amount of harmful exhaust gas.

A study on the effect of Octane-Number on combustion characteristics and vehicle performance (옥탄가 차이가 연소특성 및 차량 성능에 미치는 영향 연구)

  • Noh, Kyeong-ha;Kim, Jung-hwan;Lee, Min-ho;Kim, Ki-ho
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.41-50
    • /
    • 2016
  • This study examined the combustion characteristics and emissions, fuel economy, acceleration by selecting the two fuel with octane number difference to investigate the effect on the combustion characteristics and performance of the vehicle according to the octane number. First, a single-cylinder engine was used for the combustion characteristic experiment, Of the fuel, which is distributed on the market by the selection of two different octane fuel it is performed experiments. Single cylinder experiment examined the combustion characteristics that appear when you gradually advancing the ignition timing by the ignition timing and air-fuel ratio control for each fuel and through an output, emissions, pressure, hence examined the correlation between by octane number. In addition through the actual vehicle compared the changes in the fuel octane number difference, through acceleration tests examined the impact of the octane number requirements for high-performance segment. As a result, fuel of high octane number in accordance with the ignition timing the advancing showed a slightly stable combustion characteristics, a slight increase occurred in the acceleration test and power. However, both fuel does not significantly differ from the current mode, simulating the urban and highway fuel efficiency. Therefore, the operating conditions of the vehicle currently being sold on the Effects of high-octane fuel. fuel efficiency was found insufficient.

Study on ignition timing feedback control using the knock sensor (노크센서를 이용한 점화시기 피이드백 제어에 관한 연구)

  • 김연준;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.61-67
    • /
    • 1992
  • The ignition timing feedback control system was studied to enhance the engine power and to reduce the fuel consumption by optimizing the spark timing. The signal of a piezo-electric vibration transducer attached to the engine block was compared with that of a pressure transducer in order to determine the knock intensity. With the result of comparison the ignition timing feedback control system which detect the knock and correct the spark timing was set up. The ignition could be more advaced with this control system than the existing system without the continuous knocking, therefore the engine torque was increased.

  • PDF

A Study on the Idle Speed Control under Load Disturbance (부하변동에 강인한 엔진 공회전 속도제어에 관한 연구)

  • 최후락;장광수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.37-50
    • /
    • 1997
  • The objective of this paper is to study on the idle speed control using the fuzzy logic controller under load disturbance. The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. The inputs of the fuzzy controller are error of rpm and variation of rpm. The output of the fuzzy controller is an ISC motor step and ignition timing. The airflow is controlled by the ISC motor movement and the idle speed is controlled by the airflow control and ignition timing control. During the control, air to fuel was checked by LAMBDA sensor. All experiments were performed in a real vehicle.

  • PDF

Countermeasures to the Introduction of Low Caloric Gas Fuel for Natural Gas Engine (저열량 가스 적용에 따른 천연가스엔진의 대응 방안 연구)

  • Park, Cheol-Woong;Kim, Chang-gi;Oh, Se-Chul;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2021
  • In order to cope with the problems that may occur when the natural gas used in Korea becomes low in calories, the problems that may have to the domestic industrial gas equipment must be identified in advance, and based on this, countermeasures for efficient use of energy must be preceded. In this study, in order to solve the problem of deterioration of engine output performance and efficiency due to the introduction of low calorific gas when using a lean-burning natural gas engine that complies with the EURO-6 regulation, specific control plans and results based on the experiment are intended to be presented. In order to identify the improvement effect by the control variable represented by the ignition timing under the full load condition at the engine speed of 1,400 rpm and 550 Nm, 2,100 rpm, which is the engine speed at the rated operation condition, the thermal efficiency and exhaust gas characteristics were identified and optimized by changing the ignition timing for each gas fuel. In the case of pure methane, which shows the lowest value based on the torque under the full load condition, if the ignition timing is advanced by about 2 CAD from the reference ignition timing, the torque can be compensated without a large increase in NOx emission.

A Nonlinear Dynamic Engine Modeling for Controller Design (제어기 설계를 위한 비선형 동적 엔진 모델링)

  • 윤팔주;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.167-180
    • /
    • 1999
  • A control-oriented nonlinear dynamic engine model is developed to represent a spark ignited engine over a wide range of operating conditions. The model includes intake manifold dynamics,. fuel film dynamics, and engine rotational dynamics with transport delays inherent in the four stroke engine cycles. The model is mathematically compact enough to run in real time, and can be used as an embedded model within a control algorithm or an observer. The model is validated with engine-dynamometer experimental data, and can be used in design and development of a powertrain controller.

  • PDF

Development of Electronic Control Fuel Injection and Spark Timing Controller for Automobile Engine (자동차 기관용 전자제어 연료분사 및 점화시기 제어기 개발)

  • Kim, T.H.;Min, G.S.;Yang, S.H.;Jang, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.22-35
    • /
    • 1995
  • In this paper, an electronic control unit is developed using 16bit microcomputer for automobile engine. This system incorporate AFS(Air Flow Sensor) of Hot Wire type, DIS(Direct Ignition System), ISC(Idle Speed Control) system, CAS(Cranke Angle Sensor) and other peripheral device. This system includes hardware and software to facilitate precision control of both fuel injection and ignition timing. Especially, this controller consists of position signal(180 teeth) and 4 REF signals. Present system has maximum $720^{\circ}CA$ delay. But this system has maximum $180^{\circ}CA$. Thus, this system is able to precision control both fuel injection and ignition timing.

  • PDF

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.