• Title/Summary/Keyword: 점토 강도

Search Result 583, Processing Time 0.027 seconds

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Stability Analysis of Embankment on Soft Clay considering the Rate of Strength Increase (강도증가율을 고려한 연약점토지반 위의 성토의 안정해석)

  • 임종철;강연익;공영주;유상호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.57-67
    • /
    • 1999
  • In conventional stability analysis of embankment on soft clay ground, an averaged undrained shear strength$(s_u)$ for the depth of clay layer is usually used. Also, all applied load is assumed to an immediate load for simplicity of analysis. The load in the field, however, increases gradually. Undrained shear strength increases during loading due to consolidation of clay ground. In this study, the stability analysis program(RSI-SLOPE) is developed. By using this program, it is possible to consider the rate of strength increase according to the elapsed time of consolidation and the depth of clay ground. And the rested duration for consolidation and gradually increased load can also be considered. Using the examples of some embankments, the critical embankment heights calculated by RSI-SLOPE program are compared with those by PCSTABL without the considerations of gradually increased load and rate of strength increase. In addition, this study contains analysis and comparison about the influence of coefficient of consolidation$(c_u)$ and drainage distance$(H_{DR})$ in the embankment design. RSI-SlOPE program may be useful for more effective and accurate embankment design.

  • PDF

Analysis of Compressive Strength of Lightweight Air-mixed Soil According to the Properties of Soil (원료토의 특성에 따른 경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.157-166
    • /
    • 2008
  • To investigate the relationship between compressive strength ($q_u$) of Lightweight Air-mixed soil (LAS) and its physical deformation coefficient ($E_{50}$), a series of unconfined compressive tests have been performed on specimens of LAS according to various dredged soil types by percentage of sand, silt and clay. From the results it was found that the cement content ($C_i$) and unit weight (${\gamma}_m$) are most influence factors on strength, and percentage of sand, silt, clay by grain size analysis (KS F2302) have more effect on compressive strength than other physical properties of soil. It was also found that the rate of strength (a) increases with curing time, but it reduces with the increase of percentage of clay ($C_%$).

The Behaviour Characteristics of Strength and Deformation of the Deposited Soft Clay Owing to Contamination (퇴적 연약점토의 오염에 따른 강도 및 변형 거동특성)

  • Chun Byung-Sik;Ha Kwang-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.117-126
    • /
    • 2005
  • The chemical property analysis on the deposited clay using scanning electron microscope and energy dispersive x-ray spectrometer were performed. Also, the triaxial compression tests and consolidation tests using NaCl aqueous solution and leachate as substitute pore (or saturated) water in samples were carried out to find out the behaviour characteristics of strength and deformation of contaminated deposited clay. from the chemical composition analysis results of clay samples, the magnitudes of composition ratio were revealed in the order of O, C, Si, Al, and Fe. Of these, why the ratio of carbon appeared to be large is estimated as due to the increase of the phyto-planktons after the construction of tide embankment. In the triaxial compression test and consolidation test results, the shear strength and compression properties have increased with the increase in concentration of contaminant (NaCl). This phenomenon is considered as to be caused by the changes of soil structure to flocculent structure owing to the decrease in the thickness of diffuse double layer in proportion to increase in the concentration of electrolyte.

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay (해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측)

  • Jeon, Je-Sung;Park, Min-Chul;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.45-56
    • /
    • 2013
  • Abrams equation could be effectively applied to predict strength of cement-admixed clay and clay-water content to cement content ratio is a fundamental parameter for governing strength. This paper analyses unconfined compression strength varying with $w_c/C$ and curing time using laboratory test results. An attempt is made to identify strength of composite soil of cement and clay according to variation of Abrams coefficients and curing time. The value B, which was considered to be constant value in past researches, needs to be considered as parameter variable with curing time. From Abrams equation a correlation was formed for unconfined compression strength with mixing conditions by $w_c/C$ and curing time as dependent variable. Regression results in this paper could be used to predict strength of cement-admixed clay at various mixing conditions.

부산점토의 특성 : 조간대 퇴적층의 대자율

  • 김성욱;김인수;최은경;정성교
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.315-318
    • /
    • 2002
  • 낙동강 삼각주의 분포하는 제4기 홀로세 퇴적층 중 북부와 중부, 그리고 남부지역에 해당하는 가덕도 (신항만 조성지역), 범방리 (경마장 조성지역), 양산 (신도시 조성지역)의 조간대 퇴적층에 대한 대자율 연구를 수행하였다. 퇴적층의 층위별 대자율은 입도와 관입저항에 비례하여 대자율도 증가한다. 가덕도의 70여m의 퇴적층 중 20m, 40m의 점토층에서 대자율 변화가 나타나는데 인접한 녹산지역의 연구견과와 비교하면 고환경이 변화되는 지점과 일치한다. 삼각주의 중부에 위치하는 범방리 점토시료는 기반암까지 층위별 대자율이 일정하며, 북부의 양산지역 점토시료는 하부로 갈수록 대자율이 증가하는데 이러한 결과는 시료의 입도 분포와 같은 양상이다. 가덕도 시료와는 달리 모든 점토층이 유사한 대자율을 보여주고 있어 퇴적 동안 환경의 변화는 인지되지 않는다. 이 지역의 시료가 가덕도에 비해 높은 고도에 위치하여 가덕도 시료의 상부 점토에 해당되는 것도 환경변화가 나타나지 않는 이유가 될 수 있다. 따라서 보다 광범위한 지역에 대한 연구가 요구 된다.

  • PDF

Recycling of Waterworks Sludge in Red Clay Bricks Manufacturing (정수슬러지를 이용한 점토벽돌 생산 기술 개발 연구)

  • Hwang, Hyeon-Uk;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This study was conducted to search possibilities of the use of sludge from waterworks industry in the manufacturing of red clay bricks. Different compositions of the sludge were added into the raw materials of the bricks and required engineering characteristics of the manufactured bricks were examined. Compressive strength, plasticity, and surface absorption of the recycled bricks were analyzed and were compared with the bricks quality standard rules and regulation for quality assurance of the product. Compressive strength of the bricks made in a ratio 75% clay, 5% sludge and 20% silica was found 261.3 $kg_f/cm^3$ and that was comparable with first grade bricks standard. Compressive strength of the bricks made in a ratio 70% clay, 10% sludge, and 20% silica was found 249.9 $kg_f/cm^3$ while it was decreased to 217.3 $kg_f/cm^3$ when bricks were made in a ratio 65% clay, 15% sludge and 20% silica. However, these values of compressive strength were in agreement with the bricks quality standard. Surface absorption of the bricks made by the mixing of 20% silica with varying amount of sludge, i.e., 5%, 10%, and 20% was found 10%, 9.65% and 10.92% respectively. These values satisfied the quality standard of bricks of grade 1 and 2. Recycling of proper amount of sludge in bricks making could produce bricks of high engineering characteristics.

A study on Recycling of Waste Garnet Powder as a Raw Material for Clay Bricks (폐기 Garnet 미분말의 적벽돌 원료로의 再活用에 관한 硏究)

  • 황경진;김영임;김동수;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.36-44
    • /
    • 2002
  • The waste garnet powder as a raw material for clay bricks was studied its recycling. The physical strength of clay bricks are closely dependent both on the contents of $SiO_2$, $Al_2$$O_3$, and $Fe_2$$O_3$in clay and on the viscosity of it. Although the garnet power has very high contents of $SiO_2$, $Al_2$$O_3$, and $Fe_2$$O_3$, it could not substituted to clay because of its low viscosity. Therefore the substitution of sand with waste garnet powder was considered to influence positively on the strength of clay bricks .Mixing ratios of {clay-sand}, {sand-garnet powder}, and {clay-sand-garnet powder} based on weight were controlled in the production of clay bricks. The properties of clay bricks such as compression strength, moisture absorption, shrinkage, and specific gravity has been evaluated. It was shown that the optimal mixing combination was found to be { clay(50%)-sand(30%)-garnet powder(20%)} as a weight basis. The present study indicated possibilities to produce commercially clay bricks with the waste garnet powder. An economical benefit will be produced in viable in view of recycling waste garnet powder.