• Title/Summary/Keyword: 점탄성특성

Search Result 271, Processing Time 0.029 seconds

Rheological Properties of Citrus Pectin Solutions (감귤류 펙틴 용액의 리올리지 특성)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.799-806
    • /
    • 1995
  • The steady shear and small amplitude oscillatory dynamic rheological properties of citrus pectin $([\eta]=3.75\;dL/g)$ were characterized for a wide range of pectin concentrations $({\sim}6%)$. The typical power-law flow was observed above 2.0% concentration, and the shear rate dependence of viscosity increased with pectin concentration. The transition from dilute to concentrated regime, determined from the double logarithmic plot of ${\eta_{sp.o}}\;vs\;C[\eta]$, occurred at a critical coil overlap parameter $C^{*}[\eta]\approx4.0$, at which ${\eta_{sp.o}}$ corresponded to approximately 10.0. The slopes of ${\eta_{sp.o}}\;vs\;C[\eta]$, at $C[\eta]\;at\;C[\eta]C^{*}[\eta]$were 1.1 and 4.5, respectively. The steady viscosity $(\eta)$ displayed a good superposition at ${\eta}/{\eta}_o\;vs\;{\gamma}/{\gamma}_{0.8}$ relation with an exception of high concentration (6%), which arised from the significant deviation of flow behavior index (n values of $\eta_{a}=K\gamma^{n-1}$) at high concentration. Dynamic measurements showed that the loss modulus $(G^{\prime\prime})$ was much higher than the storage modulus $(G^\prime)$for all concentrations studied, indicating predominant viscoelastic liquid-like behavior of pectin solutions. The frequency dependence of $G^\prime$ was higher than that of $G^\prime\prime$ at the same concentration, whose trend was more pronounced with decreasing pectin concentration. The shear viscosity $(\eta)$ was almost identical to the complex viscosity $(\eta^{*})$ at low concentration, following the Cox-Merz rule, but they became increasingly different at high concentration.

  • PDF

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

A Study on the Preparation of UPE Resins with Different Glycol Molar Ratios and Their Physical Properties : 3. Estimation of Viscoelastic and Critical Surface Tension of UPE Liquid Resins (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 제조 및 물성에 관한 연구 : 3. UPE 액상 수지의 임계표면장력 및 점탄성 평가)

  • 이상효;안승국;이장우
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.589-598
    • /
    • 2000
  • In this study, various unsaturated polyester (UPE) resins were prepared from the condensation polymerization of mixtures of saturated (isophthalic acid : IPA) and unsaturated (maleic anhydride : MA) dibasic acids with propylene glycol (PG), neopentyl glycol (NPG). The critical surface tension (Υ$_{c}$) for the surface characteristics of a solid were estimated by Zisman plot, and the structure-property relationship was investigated by measuring the rheology of resins. The values of Υ$_{c}$ for glass of solid were 30.5 mNㆍm$^{-1}$ for UPE resin liquids. As the content of NPG in a PG/NPG glycol mixture increased, both the contact angle and the surface tension of the UPE resin liquids were found to decrease. The dynamic viscoelasticities of UPE resins with different glycol molar ratios were also measured. Shear rate dependence of viscosity and angular frequency dependence of storage, and loss modulus tended to decrease with increasing NPG content.

  • PDF

Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response (차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.

An Analysis on Characteristics of Thickness of Asphalt Concrete Pavement with Computer Programs (전산해석 프로그램을 이용한 아스팔트포장 단면의 거동특성분석)

  • Lee, Gyeong-Ha;Lee, Gwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.1 no.2
    • /
    • pp.155-168
    • /
    • 1999
  • Asphalt pavement tends to rut in high temperature and to crack in cold temperature. The performance of asphalt pavement can be deteriorated by korean weather condition which has the four distinct seasons. In this study, the typical sections that may minimize rutting and fatigue were analyzed through the numerical model tests. The layered elastic theory , finite element method and visco elastic theory were utilized for these numerical model tests. From the various numerical model tests, it is found that an optimum design procedure was recommended. It was increasing the thickness of asphalt stabilized base with fixing the wearing course as 5cm the minimum specified thickness. The section was most beneficial in resting rutting and fatigue. From the analysis of the relative index on tensile strain and cost analysis, it was recommended that the thickness ratio of subbase and asphalt concrete is 1.0$\sim$2.5.

  • PDF

Characteristic Analysis of Resistance Spot Welding between Dissimilar Materials of 1.035mm Laminated Vibration Damping Steel with 35㎛ Viscoelastic Resin (35㎛ 점탄성수지가 적용된 1.035mm 제진강판의 이종소재간 저항점용접 특성분석)

  • Bae, Ki-Man;Baek, Jong-Jin;Shin, Chang-Yeul;Kim, Seung-Kyung;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.24-29
    • /
    • 2021
  • Recently, owing to the high demand for eco-friendly cars in the automotive industry, noise and vibrations have become major challenges. The use of laminated damping steel is increasing in response to these demands. Laminated damping steel is primarily used in sound insulation plates. The vibration energy is converted into thermal energy due to the viscoelastic resin being located between two steel sheets and being able to damp the vibrations when an external force, such as, noise or vibration is applied to the steel plate. Laminated damping steel is chiefly applied to dash panels in automotive body parts, and because of its structure, junction technology for bonding with other components is necessary. However, there has not been sufficient research conducted on junctions. In this study, regardless of the electrode shape, in the range of 4.0 ~ 8.0 kA welding current, the same welding force and welding time were applied which were 2.8 kN and 200 m/s (12 cycles) and the tensile shear load and nugget size were analyzed after the resistance spot welding between different materials of laminated damping steel with a thickness of 1.035 mm. The results show that in the range of 5 ~ 8 kA welding current, 1.035 mm laminated damping steel meets the MS181-15 standard, which is the technical standard of Hyundai-Kia Motors.

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

Modal Characteristics of a Structure with Stiffness and Damping Eccentricit (강성 및 감쇠 비대칭 구조물의 모드 특성)

  • 김진구;방성혁
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2002
  • In this study the modal characteristics and responses of an asymmetric structure with added viscoelastic dampers were investigated for design parameters such as eccentricity of stiffness and added dampers, the loss factor of the damping materials used. For modal characteristics, variation of the quantities such as natural frequencies, modal damping ratios, modal participation factors, and dynamic amplification factors were observed, and displacements at flexible and stiff edges, and at center of mass were obtained. Based on the results, the problem of the optimum damper distribution to minimize the torsional effects was addressed, and the proposed method for optimum damper distribution was applied to a multi-story structure to verify the applicability Finally the effect of viscous and viscoelastic dampers were compared by varying the loss factor of the viscoelastic material.

Properties Evaluation of Thermochromic Gel Compounds for Detecting Overheating (과열감지용 열변색 겔성형체의 특성 평가)

  • Kim, Jeong-Hun;Cho, Myoung-Ho;Kang, Young-Goo
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • In this research, gel compounds containing thermochromic ingredients were manufactured and evaluated to prevent the transition hazards of fire and explosion, which they are one of the methods for detecting abnormal conditions caused by overheating of special materials early. And also, compounds of viscoelastic and brushing types were manufactured as the kind and content of raw materials, and manufacturing process to enlarge the application for overheat-detecting targets. Test methods were conducted as chromism test, viscosity profile, starting time of thermochromism, and FT-IR analysis. Thermochromic gel materials exhibit chromism properties that can detect abnormal conditions effectively, and then they are possible to various applications.