• Title/Summary/Keyword: 점탄성재

Search Result 70, Processing Time 0.023 seconds

A Relation of Viscoelastic Properties to Empirical Properties of Korean Asphalt Binder (국내 아스팔트의 점탄성적 물성과 경험적 물성과의 관계)

  • Kim, Nam-Ho;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.113-121
    • /
    • 2001
  • Among the currently available binder specifications, Superpave Performance Grade asphalt specification is regarded as a superior specification on its theoretical background as well as pavement performance relationship. Many difficulties are expected; however, for Superpave implementation in Korea because of heavy burden of equipment cost as well as lack of trained personnel in asphalt industry, which may too much barrier to overcome in Korean situation. As an effort to improve qualify of asphalt binder, recently, people discuss about a possibility of constituting a performance-based asphalt specification using rather easy-to-measure asphalt properties. The objective of this paper is to determine the possibility of constituting a performance-based asphalt specification using an empirical asphalt properties, such as penetration ring and ball softening point rather than using fundamental properties of asphalt. Nine straight asphalts, that covers entire straight asphalt from all Korean refineries, and eighteen modified asphalts that were modified from two modifiers were included in the study. An analysis was made through a comparison between empirical properties and Superpave PG criteria. This study concluded that it may possible to constitute a pseudo-Superpave-like specification using an empirical asphalt properties as a specification criteria. Therefore, more systematic research is needed to constitute the asphalt specification.

  • PDF

The Investigation and Development of Astigmatism Correction Treatments by Finite Element Method and Animal Experiments (유한요소법과 동물실험을 통한 난시교정술의 고찰 및 개발)

  • Sin, Jeong-Uk;Han, Tae-Won;Kim, Su-Hyang;Kim, Jae-Ho;Lee, Seong-Jae;Park, Hyo-Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 1999
  • The purpose of this study is to investigate the effects of various factors in keratotomy for astigmatism correction on surgical outcomes by finite element method as well as animal experiments. Three kinds of surgical techniques were mechanically investigated : arcuate, straight, and inverse arcuate keratotomy. Among the three techniques the arcuate keratotomy is the most popular one while the other two techniques are being investigated in this area. The arcuate keratotomy was found to be more controllable and effective in reducing the refractive power than the others. In arcuate keratotomy it was found most effective when the incision was located in the middle position between the apex and the edge of the cornea from the results of experiment as well as finite element study. Regarding to the range of the corneal incision in arcuate keratotomy, the incision angle of 90$^{\circ}$ was found th be most effective in reducing refractive power than other angles even it was incised up to 150$^{\circ}$. Therefore, it was concluded that 90$^{\circ}$ of incision angle results in the largest decrease in refractive power in arcuate keratotomy. However, other important findings were that the effect of the surgery decreased with time so the visco-effect of the cornea and auto-healing process. Therefore, these factors should be considered in future studies.

  • PDF

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

Influence of the Biodegradable Packaging Material on the Rheological Properties of Eggs (생분해성 포장재질이 달걀의 물성에 미치는 영향 연구)

  • Kim, Ji-Hyun;Park, Jong-Shin;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.525-530
    • /
    • 1997
  • The changes in rheological properties of egg white stored in biodegradable package were investigated by pH change, failure stress and stress relaxation curve, and compared with control without package and complex PE. Initial pH of egg white stored in biodegradable package changed from 8.39 to 9.3 after 8 day storage, showing similar trend in pH change as that of control without package. Initial 14.25 N failure stress was changed into 6.76 N in biodegradable package and 9.31 N in control. Complex PE, having a relatively low gas permeability compared to biodegradable package, showed less pH changes from 8.30 to 8.81, but a greater decrease in failure stress into 5.29 N, indicating more deteriorating effect in complex PE package. Viscoelastic constants, such as elastic constant and viscous constant, obtained from stress-relaxation curve by three element Maxwell model were not significantly different between control and biodegradable package, but eggs stored in complex PE showed greater changes during storage. Therefore, the permeability seems to be the major factors to influence the rheological properties of egg and biodegradable packaging materials showed a potential substitute package for eggs.

  • PDF

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.

A Study on the Flow Characteristics of Newtonian Fluid and Non-Newtonian Fluid in Dividing Tubes (분기관내 뉴턴 유체 및 비뉴턴 유체의 유동특성에 관한 연구)

  • Ha, O.N.;Chun, U.H.;Kim, G.;Lee, B.K.;Lee, H.S.;Yun, C.H.;Lee, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.113-131
    • /
    • 1998
  • The objective of the present study is to investigate the characteristics of the dividing flow in the laminar flow region. Using glycerine water solution(wt43%) for Newtonian fluid and the polymer of viscoelastic fluid(500wppm) for non-Newtonian fluid, this research investigates the flow state of the dividing tube in steady laminar flow region of the two dimensional dividing tube by measuring the effect of Reynolds number, dividing angle, and the flow rate ratio on the loss coefficient. In T- and Y-type tubes, the loss coefficients of the Newtonian fluid decreases in constant rate when the Reynolds number is below 100. The effect of the flow rate ratio on the loss coefficients is negligible. But when the Reynolds number is over 100, the loss coefficient with various flow rate ratios approach an asymptotic value. The loss coefficient of the non-Newtonian fluid for different the Reynolds number shows the similar tendency of the Newtonian fluid. And when the Reynolds number is over 300, the loss coefficient is approximately 1.03 regardless of flow rate ratio or the dividing angle. The aspect ratio does hardly influence the reattachment length and the loss coefficient of both Newtonian and non Newtonian fluid. The loss coefficient decreases as the Reynolds number increases. The loss coefficient of Newtonian fluid is larger than that of non-Newtonian fluid.

  • PDF

Thermo-rheological behaviors of Phenolic Resins Blended with Petroleum-based Pitches for High Temperature Carbon Composites (석유계 피치가 첨가된 고온 탄소복합재용 페놀수지의 열 유변학적 거동 연구)

  • Yang, Jae-Yeon;Kuk, Yun-Su;Seo, Min-Kang;Kim, Byoung-Suhk
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.329-335
    • /
    • 2020
  • In this study, the thermo-rheological behaivors of petroleum pitches with different softening points were studied, and a B-stage phenolic resins/petroleum pitches blends were prepared by adding petroleum pitches to the phenolic resins. As a result, the petroleum pitch with different softening points decreased the fluidity of the petroleum pitch as the Quinoline insoluble (QI) content increased and showed the viscous properties of the solid. In addition, the effect of adding petroleum pitches having different softening points on the thermo-rheological properties of phenolic resins was investigated. When petroleum pitch with a high softening point was added, the fluidity of the phenolic resin was reduced, and the hardening behavior was fast. It was possible to control the curing rate and curing behavior of the phenolic resin by adding petroleum pitches of different softening points. Among them, the phenolic resin mixture to which P-Pitch 2 was added has a higher fluidity than other blends under the same curing temperature condition.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.