• Title/Summary/Keyword: 점진 파손

Search Result 36, Processing Time 0.02 seconds

Crippling Analysis of Z-Section Composite Stringers (Z-단면 복합재 스트링거의 크리플링 해석)

  • 권진회
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.65-73
    • /
    • 1999
  • Crippling stress and failure behavior of Z-section graphite/epoxy composite laminated stringers are investigated by the nonlinear finite element method. Stringers are idealized using 9-node laminated shell element. The complete unloading model is introduced into the finite element method for the progressive failure analysis. A modified Riks method is used to trace the post-failure equilibrium path after local buckling. Finite element results are validated with previous experimental results. The results show that the most important parameter affecting the crippling stress of Z-section stringers is the flange width. In terms of stacking sequence. the highest cripping stress is found at the stringer with $[{\pm}45/0/90]s$ lamination.

  • PDF

Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load (굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석)

  • Lim, Sung June;Baek, Sang Min;Kim, Min Sung;Park, Min Young;Park, Chan Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.256-265
    • /
    • 2019
  • In this paper, the progressive damage of an orthogonal grid shell fabricated with plain weave fabric CFRP under bending load was investigated. The orthogonal grids were cured with the bottom composite shell. Progressive damage analysis of an orthogonal grid shell under bending was performed using nonlinear finite element method with Hashin-Rotem failure criterion and Matzenmiller-Lubliner-Taylor(MLT) model. In addition, the three - point bending test for the structure was carried out and the test results were compared with the analysis results. The comparison results of the strain and displacement agreed well. The damage area estimated by the progressive damage analysis were compared with the visual inspection and ultrasonic non-destructive inspection.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR-III Rocket (KSR-III 삼단 복합재 연소관의 구조 해석 및 변형률 측정)

  • 박재성;김철웅;조인현;오승협;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.24-31
    • /
    • 2001
  • Filament wound structures such as pressure tanks, pipes and motor cases of rockets are widely used in the aerospace application. The determination of a proper winding angle and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In this study, possible winding angles considering the slippage between a fiber and a mandrel surface are calculated using the semi-geodesic path equation. In addition, finite element analysis using ABAcUS are performed to predict the behavior of filament wound structures considering continuous change of winding angle along the dome part. The water-pressuring tests of 3rd stage motor case are performed to verify the analysis procedure. The strain gages are attached on the surface in the fiber direction. Progressive failure analysis is performed to predict the burst pressure and the weakest region of the motor case. The effect of reinforcement is also studied to increase its performance.

  • PDF

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank (타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석)

  • Kang, Sang-Guk;Kim, Myung-Gon;Park, Sang-Wuk;Kong, Cheol-Won;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.592-600
    • /
    • 2007
  • Nowadays, researches for replacing material systems for cryotanks by composites have been being performed for the purpose of lightweight launch vehicle. In this paper, a type 3 propellant tank, which is composed of the composite developed for cryogenic use and an aluminum liner, was fabricated and tested considering actual operating environment, that is, cryogenic temperature and pressure. For this aim, liquid nitrogen (LN2) was injected into the fabricated tank and in turn, gaseous nitrogen (GN2) was used for pressurization. During this test procedure, strains and temperatures on the tank surface were measured. The delamination between hoop layer and helical one, was detected during the experiment. Several attempts were followed to investigate the cause analytically and experimentally. Thermo-elastic analysis in consideration of the progressive failure was done to evaluate the failure index. Experimental approach through a LN2 immersion test of composite/aluminum ring specimens suitable for simulating the Type 3 tank structure.

Transient Effects of Wind-wave Hybrid Platform in Mooring Line Broken Condition (부유식 파력-해상풍력 복합발전 구조물의 계류선 손상 시 과도 응답 해석)

  • Bae, Yoon Hyeok;Lee, Hyebin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • Floating offshore structures keep its position by a mooring system against various kind of environmental loadings. For this reason, a reliable design of the mooring system is a key factor for initial design stage of a floating structure. However, there exists possibility of mooring failure, even the system is designed with enough safety margin, due to the unexpected extreme environmental conditions or long-term fatigue loadings. The breaking of one of the mooring lines may change the tension level of the other mooring lines, which can potentially result in a progressive failure of the entire structure. In this study, time domain numerical simulation of 10MW class wind-wave hybrid platform was carried out with partially broken mooring line. Overall platform responses and variations of the mooring line tension were numerically evaluated.

Postbuckling of Composite Cylinders under External Hydrostatic Pressure (외부 수압을 받는 복합재 원통의 후좌굴 연구)

  • Son, Hee-Jin;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 2007
  • The postbuckling behavior and failure of composite cylinders subjected to external hydrostatic pressure are investigated by a finite element method and test. A nonlinear finite element program, ACOS, is used for the postbuckling progressive failure analysis of composite cylinders. A total of 5 carbon/epoxy composite cylinders were fabricated and tested to verify the finite element results. For comparison, analyses by MSC/NASTRAN and MSC/MARC are additionally conducted. Among the softwares, the finite element program, ACOS, predicts the buckling loads the best with about 11 to 26% deviation from experimental results except for one specimen. While the finite element analysis shows global buckling modes with 4 waves in hoop direction, in the experiments the local buckling appears first and results in the final failure without global buckling.

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF