Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.425-426
/
2019
전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.
In the real-world operational environment, most of text classification systems have the problems of insufficient training documents and no prior knowledge of feature space. In this regard, $Na{\ddot{i}ve$ Bayes is known to be an appropriate algorithm of operational text classification since the classification model can be evolved easily by incrementally updating its pre-learned classification model and feature space. This paper proposes the improving technique of $Na{\ddot{i}ve$ Bayes classifier through feature weighting strategy. The basic idea is that parameter estimation of $Na{\ddot{i}ve$ Bayes considers the degree of feature importance as well as feature distribution. We can develop a more accurate classification model by incorporating feature weights into Naive Bayes learning algorithm, not performing a learning process with a reduced feature set. In addition, we have extended a conventional feature update algorithm for incremental feature weighting in a dynamic operational environment. To evaluate the proposed method, we perform the experiments using the various document collections, and show that the traditional $Na{\ddot{i}ve$ Bayes classifier can be significantly improved by the proposed technique.
In these day, many data including sensor, delivery, credit and stock data are generated continuously in massive quantity. It is difficult to learn from these data because they are large in volume and changing fast in their concepts. To handle these problems, learning methods based in sliding window methods over time have been used. But these approaches have a problem of rebuilding models every time new data arrive, which requires a lot of time and cost. Therefore we need very simple incremental learning methods. Bayesian method is an example of these methods but it has a disadvantage which it requries the prior knowledge(probabiltiy) of data. In this study, we propose a learning method based on attribute values. In the proposed method, even though we don't know the prior knowledge(probability) of data, we can apply our new method to data. The main concept of this method is that each attribute value is regarded as an expert learner, summing up the expert learners lead to better results. Experimental results show our learning method learns from data very fast and performs well when compared to current learning methods(decision tree and bayesian).
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.9
/
pp.1979-1986
/
2010
Biological early warning system detects toxicity by looking at behavior of organisms in water. The system uses classifier for judgement about existence and amount of toxicity in water. Boosting algorithm is one of possible application method for improving performance in a classifier. Boosting repetitively change training example set by focusing on difficult examples in basic classifier. As a result, prediction performance is improved for the events which are difficult to classify, but the information contained in the events which can be easily classified are discarded. In this paper, an incremental learning method to overcome this shortcoming is proposed by using the extended data expression. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression by exploiting the necessary information not only from the well classified, but also from the weakly classified events. Experimental results show that the new algorithm outperforms the former Learn++ method without using the weight parameter.
Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.181-182
/
2015
음악 검색에 있어 소셜 태그 정보는 사용자로 하여금 음악의 내재적 의미를 빠르게 파악할 수 있도록 한다. 음악의 소셜 태그 정보는 음악 추천 시스템을 활용하는 사용자(청취자)에 의해 점진적으로 완성되기 때문에 초기에 완전한 태그 정보를 수집하는 것은 어렵다. 본 논문에서는 음악의 일부 태그가 누락되어 있는 상황에서 음악 정보 검색을 자동으로 수행할 수 있는 클래스 분류 알고리즘을 제안하고자 한다.
메모리 기반 추론 기법에서 기억공간의 효율적 사용과 분류 시간을 줄이기 위한 다양한 방법들이 연구되고 있으며, NGE(Nested Generalized Exemplar) 이론을 예로 들 수 있다. 본 논문에서는 학습 패턴 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging) 기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA) 기법을 제안한다.
Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.409-410
/
2019
점진적 빅데이터 학습 기반의 전자저널 구독가치 큐레이션 서비스는 대용량의 학술정보 처리환경을 하드웨어 기반에서 소프트웨어 기반으로 데이터를 학습함에 있어 학습 소요시간 및 메모리 부족 문제 등을 해결하기 위해 널리 사용하는 자질축소 기법에 의존하지 않고 대량의 데이터를 자유롭게 학습하고 증분 데이터 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법이다. 학술정보의 논문요약과 참고문헌의 데이터 수집 정제 분류 저장 분석을 통해 활용할 수 있는 지표를 생성하여 도서관 학교 공공기관 연구기관 등에 제공하여 기관에서 구독하고 있는 학술지가 연구에 얼마나 활용되고 있는지를 판단하는 정보 가용성을 활용한 양질의 정보원을 확보하여 불필요한 저널 구독을 중단하고 연구자가 요구하는 품질 좋은 학술정보를 제공할 수 있는 서비스로 일반적인 학술문헌 이용도 평가방법과 달리 구독 가치에 대한 지표를 제공하는 큐레이팅 방법이다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.721-723
/
2005
패턴 분류에 많이 사용되는 MBR(Memory Based Reasoning) 기법은 메모리에 저장된 학습패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 분류 기준을 설명할 수 있는 IF-THIN 형태의 규칙을 생성하고 생성된 규칙의 일반화 성능을 향상시키기 위하여 불필요한 조건을 제거하는 규칙 pruning 알고리즘과 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.193-197
/
2005
점진적 개념 학습 알고리즘인 COBWEB은 클래스 정보가 주어지지 않은 사례들(instances)을 분류하기 위하여 사례의 속성과 값에 근거하여 학습하며 각 노드가 유사한 사례들의 집합인 클래스에 해당하는 분류 트리를 생성하는 알고리즘이다. 유사한 사례들을 같은 클래스로 분류하기 위한 기준으로 category utility가 사용되며 이는 클래스 내부의 유사도와 클래스간의 차이점을 최대화하는 방향으로 클래스를 분류한다 기존의 COBWEB에 사용되는 category utility는 클래스 사이즈와 예측 정확성 사이의 tradeoff 관계로 볼 수 있으며, 이로 인하여 예측 정확성은 약간 감소하나 클래스 사이즈가 커지는 방향으로 학습이 진행 될 수 있는 편향성(bias)를 가지고 있다. 이는 분류 트리에 불필요한 클래스 노드들(spurious nodes)을 생성하게 하여 학습 결과인 클래스 개념을 이해하는뎨 어렵게 한다. 본 논문에서는 클래스와 그에 속하는 사례들의 속성-값 분포를 고려하여 클래스와 속성의 연관성에 비례한 가충치를 더한 변형된 category utility를 제안하고, dataset에 대한 실험을 통하여 제안된 category utility가 기존의 큰 클래스 사이즈를 선호하는 bias를 완화시킴을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.