• Title/Summary/Keyword: 점진적 분류

Search Result 150, Processing Time 0.029 seconds

Design and Implementation of a Generic Classification System Based on Incremental Learning Technology (점진적 학습 기술 기반 범용적인 분류기 구조설계 방법의 설계 및 구현)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.425-426
    • /
    • 2019
  • 전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.

  • PDF

Improving Naïve Bayes Text Classifiers with Incremental Feature Weighting (점진적 특징 가중치 기법을 이용한 나이브 베이즈 문서분류기의 성능 개선)

  • Kim, Han-Joon;Chang, Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.457-464
    • /
    • 2008
  • In the real-world operational environment, most of text classification systems have the problems of insufficient training documents and no prior knowledge of feature space. In this regard, $Na{\ddot{i}ve$ Bayes is known to be an appropriate algorithm of operational text classification since the classification model can be evolved easily by incrementally updating its pre-learned classification model and feature space. This paper proposes the improving technique of $Na{\ddot{i}ve$ Bayes classifier through feature weighting strategy. The basic idea is that parameter estimation of $Na{\ddot{i}ve$ Bayes considers the degree of feature importance as well as feature distribution. We can develop a more accurate classification model by incorporating feature weights into Naive Bayes learning algorithm, not performing a learning process with a reduced feature set. In addition, we have extended a conventional feature update algorithm for incremental feature weighting in a dynamic operational environment. To evaluate the proposed method, we perform the experiments using the various document collections, and show that the traditional $Na{\ddot{i}ve$ Bayes classifier can be significantly improved by the proposed technique.

Committee Learning Classifier based on Attribute Value Frequency (속성 값 빈도 기반의 전문가 다수결 분류기)

  • Lee, Chang-Hwan;Jung, In-Chul;Kwon, Young-S.
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • In these day, many data including sensor, delivery, credit and stock data are generated continuously in massive quantity. It is difficult to learn from these data because they are large in volume and changing fast in their concepts. To handle these problems, learning methods based in sliding window methods over time have been used. But these approaches have a problem of rebuilding models every time new data arrive, which requires a lot of time and cost. Therefore we need very simple incremental learning methods. Bayesian method is an example of these methods but it has a disadvantage which it requries the prior knowledge(probabiltiy) of data. In this study, we propose a learning method based on attribute values. In the proposed method, even though we don't know the prior knowledge(probability) of data, we can apply our new method to data. The main concept of this method is that each attribute value is regarded as an expert learner, summing up the expert learners lead to better results. Experimental results show our learning method learns from data very fast and performs well when compared to current learning methods(decision tree and bayesian).

Biological Early Warning System for Toxicity Detection (독성 감지를 위한 생물 조기 경보 시스템)

  • Kim, Sung-Yong;Kwon, Ki-Yong;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1979-1986
    • /
    • 2010
  • Biological early warning system detects toxicity by looking at behavior of organisms in water. The system uses classifier for judgement about existence and amount of toxicity in water. Boosting algorithm is one of possible application method for improving performance in a classifier. Boosting repetitively change training example set by focusing on difficult examples in basic classifier. As a result, prediction performance is improved for the events which are difficult to classify, but the information contained in the events which can be easily classified are discarded. In this paper, an incremental learning method to overcome this shortcoming is proposed by using the extended data expression. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression by exploiting the necessary information not only from the well classified, but also from the weakly classified events. Experimental results show that the new algorithm outperforms the former Learn++ method without using the weight parameter.

Online anomaly detection algorithm based on deep support vector data description using incremental centroid update (점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘)

  • Lee, Kibae;Ko, Guhn Hyeok;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.199-209
    • /
    • 2022
  • Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.

Robust Music Categorization Method using Social Tags (소셜 태그를 이용한 강인한 음악 분류 기법)

  • Lee, Jaesung;Kim, Dae-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.181-182
    • /
    • 2015
  • 음악 검색에 있어 소셜 태그 정보는 사용자로 하여금 음악의 내재적 의미를 빠르게 파악할 수 있도록 한다. 음악의 소셜 태그 정보는 음악 추천 시스템을 활용하는 사용자(청취자)에 의해 점진적으로 완성되기 때문에 초기에 완전한 태그 정보를 수집하는 것은 어렵다. 본 논문에서는 음악의 일부 태그가 누락되어 있는 상황에서 음악 정보 검색을 자동으로 수행할 수 있는 클래스 분류 알고리즘을 제안하고자 한다.

  • PDF

A New Incremental Instance-Based Learning Algorithm (새로운 점진적 인스턴스 기반 학습기법)

  • Han, Jin-Chul;Yoon, Chung-Hwa
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.477-480
    • /
    • 2005
  • 메모리 기반 추론 기법에서 기억공간의 효율적 사용과 분류 시간을 줄이기 위한 다양한 방법들이 연구되고 있으며, NGE(Nested Generalized Exemplar) 이론을 예로 들 수 있다. 본 논문에서는 학습 패턴 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging) 기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA) 기법을 제안한다.

  • PDF

Journal Subscription Value Curation Service Based on Incremental Big Data Learning (점진적 빅데이터 학습기반의 전자저널 구독가치 큐레이션 서비스)

  • Lee, Jeong-won;Jin, Seong-il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.409-410
    • /
    • 2019
  • 점진적 빅데이터 학습 기반의 전자저널 구독가치 큐레이션 서비스는 대용량의 학술정보 처리환경을 하드웨어 기반에서 소프트웨어 기반으로 데이터를 학습함에 있어 학습 소요시간 및 메모리 부족 문제 등을 해결하기 위해 널리 사용하는 자질축소 기법에 의존하지 않고 대량의 데이터를 자유롭게 학습하고 증분 데이터 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법이다. 학술정보의 논문요약과 참고문헌의 데이터 수집 정제 분류 저장 분석을 통해 활용할 수 있는 지표를 생성하여 도서관 학교 공공기관 연구기관 등에 제공하여 기관에서 구독하고 있는 학술지가 연구에 얼마나 활용되고 있는지를 판단하는 정보 가용성을 활용한 양질의 정보원을 확보하여 불필요한 저널 구독을 중단하고 연구자가 요구하는 품질 좋은 학술정보를 제공할 수 있는 서비스로 일반적인 학술문헌 이용도 평가방법과 달리 구독 가치에 대한 지표를 제공하는 큐레이팅 방법이다.

  • PDF

A New Rule-Generation Algorithm (새로운 규칙 생성 알고리즘)

  • Kim Sang-kwi;Yoon Chung-hwa
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.721-723
    • /
    • 2005
  • 패턴 분류에 많이 사용되는 MBR(Memory Based Reasoning) 기법은 메모리에 저장된 학습패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 분류 기준을 설명할 수 있는 IF-THIN 형태의 규칙을 생성하고 생성된 규칙의 일반화 성능을 향상시키기 위하여 불필요한 조건을 제거하는 규칙 pruning 알고리즘과 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안한다.

  • PDF

Incremental Conceptual Clustering Using Modified Category Utility (변형된 Category Utility를 이용한 점진 개념학습)

  • Kim Pyo Jae;Choi Jin Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.193-197
    • /
    • 2005
  • 점진적 개념 학습 알고리즘인 COBWEB은 클래스 정보가 주어지지 않은 사례들(instances)을 분류하기 위하여 사례의 속성과 값에 근거하여 학습하며 각 노드가 유사한 사례들의 집합인 클래스에 해당하는 분류 트리를 생성하는 알고리즘이다. 유사한 사례들을 같은 클래스로 분류하기 위한 기준으로 category utility가 사용되며 이는 클래스 내부의 유사도와 클래스간의 차이점을 최대화하는 방향으로 클래스를 분류한다 기존의 COBWEB에 사용되는 category utility는 클래스 사이즈와 예측 정확성 사이의 tradeoff 관계로 볼 수 있으며, 이로 인하여 예측 정확성은 약간 감소하나 클래스 사이즈가 커지는 방향으로 학습이 진행 될 수 있는 편향성(bias)를 가지고 있다. 이는 분류 트리에 불필요한 클래스 노드들(spurious nodes)을 생성하게 하여 학습 결과인 클래스 개념을 이해하는뎨 어렵게 한다. 본 논문에서는 클래스와 그에 속하는 사례들의 속성-값 분포를 고려하여 클래스와 속성의 연관성에 비례한 가충치를 더한 변형된 category utility를 제안하고, dataset에 대한 실험을 통하여 제안된 category utility가 기존의 큰 클래스 사이즈를 선호하는 bias를 완화시킴을 보이고자 한다.

  • PDF