• 제목/요약/키워드: 점군 데이터(포인트 클라우드)

검색결과 3건 처리시간 0.015초

침수흔적조사를 위한 UAV 사진측량 기반 DEM의 추출 및 활용 (Extraction and Utilization of DEM based on UAV Photogrammetry for Flood Trace Investigation and Flood Prediction)

  • 박정식;최용진;이진덕
    • 한국지리정보학회지
    • /
    • 제26권4호
    • /
    • pp.237-250
    • /
    • 2023
  • 본 연구에서는 UAV기반 항공사진측량에 의해 정사사진 및 DEM을 생성하고 이를 침수흔적도 제작을 위한 정밀조사에 적용하고자 하였다. 2012년 9월 제6호 태풍 산바(Sanba)의 영향으로 제방붕괴 및 내수침수 피해가 발생한 구미시 고아읍 농경지를 연구대상지역으로 선정하였다. UAV사진측량 성과의 최적 정확도를 얻기 위해 연구지역에 19점의 GCP 최적 배치상태에서 Pix4Dmapper 소프트웨어를 이용한 영상처리를 통하여 점군 데이터, DEM 및 정사영상을 생성하였다. loudCompare의 CSF Filtering를 적용하여 지면요소와 비지면요소로 point cloud를 분리한 후 GRASS GIS 소프트웨어에서 비지면요소만을 사용하여 최종적으로 보정된 DEM을 생성하였다. 최종 생성된 DEM으로부터 추출한 침수위 및 침수심 데이터와 한국국토정보공사(LX)의 공공데이터 포털사이트를 통하여 제공된 2012년 당시 같은 지역에 대한 기존 자료의 침수위 및 침수심 데이터를 비교하여 제시하였다.

산악지형 드론 라이다 데이터 점군 분리를 위한 CSF 알고리즘 적용에 관한 연구 (Study on Applicability of Cloth Simulation Filtering Algorithm for Segmentation of Ground Points from Drone LiDAR Point Clouds in Mountainous Areas)

  • 구슬 ;임언택;정용한;석재욱;김성삼
    • 대한원격탐사학회지
    • /
    • 제39권5_2호
    • /
    • pp.827-835
    • /
    • 2023
  • 드론 라이다(Drone LiDAR)는 산지의 비탈면 정상부나 접근이 불가한 사면에 대해 근접 조사가 가능한 첨단 측량 기술로 산악지형에서 현장조사를 위한 활용이 높아지고 있다. 드론 라이다를 활용하여 지형 정보를 구축하기 위해서는 취득된 포인트 클라우드로부터 지면과 비지면 점들을 효과적으로 분리하는 전처리 과정이 필요하다. 따라서 본 연구에서는 상업용 드론에 탑재된 항공 라이다를 이용하여 산악지형의 점군 자료를 취득하고, 지면분리 기법 중 하나인 cloth simulation filtering (CSF) 알고리즘을 적용하고 정확도를 검증하였다. 알고리즘을 적용한 결과, 지면과 비지면에 대한 분리 정확도는 84.3%, kappa 계수는 0.71로 나타났고 드론 라이다 데이터를 산악지형의 산사태 현장조사에 효과적으로 활용할 수 있음을 확인하였다.

정밀 도로 지도 구축 방법을 이용한 GPR 영상 데이터 지오레퍼런싱 (Georeferencing of GPR image data using HD map construction method)

  • 신진수;원종현;이시영
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.507-513
    • /
    • 2021
  • GPR (Ground Penetrating RADAR)은 도로의 포장 상태 및 싱크홀, 지하관로를 검사하는 센서로 도로관리에 활발히 사용되는 센서이다. MMS (Mobile Mapping System)는 도로 표면과 주변 환경에 대한 정확한 정밀 도로 지도를 제공한다. 두 종류의 데이터가 동일한 지역에서 구축되면 지상과 지하의 공간정보를 동시에 구축할 수 있어서 효율적이며 육안으로 도로와 도로 주변의 중요 시설물, 지하의 관로 위치등을 파악할 수 있어서 현장에 대한 직관적인 이해가 가능하여 도로나 시설물을 관리하는데 있어서 유용한 도구가 된다. 그러나 이러한 최신 기술을 적용한 해외의 장비는 고가이며 국내 실정에 맞지 않다. 해외 개발 장비를 대체하고 향후 국산 장비를 개발할 수 있는 원천기술을 확보하기 위해 LiDAR (Light Detection And Raging)와 GNSS/INS (Global Navigation Satellite System / Inertial Navigation System)를 동기화 하고, 동일한 GNSS/INS에 GPR 데이터도 동기화 하였다. 동기화된 GPR 데이터를 취득 당시의 GNSS/INS의 위치와 자세정보를 이용하여 지오레퍼런싱을 수행하는 소프트웨어를 개발하였다. 개활지와 비개활지로 구분하여 도로 현장에서 실험을 수행하였으며, LiDAR를 통해 취득되는 3D 포인트 클라우드 데이터를 통해서 지상의 도로와 주변 시설물을 육안으로 쉽게 확인할 수 있었다. 지오레퍼런싱된 GPR 데이터도 점군데이터와 함께 3D 뷰어로 볼 수 있었으며, 지하의 시설물의 위치를 GPR 데이터를 통해 쉽고 빠르게 확인할 수 있었다.