Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1634-1638
/
2008
하천의 2차원 흐름 해석, 유사이동 해석, 오염확산 해석을 위한 유체의 수치해석법에는 유한요소법, 유한차분법, 유한차분법의 변형인 유한체적법, 경계적분법 등이 있다. 유체에 대한 수치해석 기법으로 전통적으로 가장 많이 사용되고 있는 방법은 유한차분법이지만, 비구조적 요소망(unstructured mesh)을 이용하여 복잡한 형상을 표현하기가 상대적으로 용이한 유한요소법이 다양한 형태의 하천 해석에는 더욱 적합할 것이다. 본 연구에서는 비구조적 요소망을 advanced front method를 이용하여 생성해 보았다. Advanced front method는 해석하고자 하는 영역에 적절한 절점들을 생성한 후 삼각 요소망을 구성하는 grid based advanced front method와 절점들을 생성하지 않고 해석 영역에 삼각 요소를 바로 구성하는 element based advanced front method로 나눌 수 있다. Grid based advanced front method에서 해석 영역에 적절한 절점을 생성하는 방법으로는 일반적인 격자 구조의 절점 생성 방법을 적용하였으며 경계와의 거리가 가까운 절점은 생성되지 않으며, 삼각 요소를 구성할 때에는 두 개의 인접 절점을 비교하여 최적의 삼각 요소를 구성하게 된다. 단 두 개의 인접 절점만을 비교함으로서 비교적 빠른 시간 안에 최적의 삼각 요소망을 구성할 수 있다. 삼각 요소망을 생성한 후에는 Laplacian smoothing을 이용하여 삼각 요소망의 형질을 개선하였다. Element based advanced front method는 외부 경계에서부터 시작된 Front가 내부 영역으로 확대되어지며 각 Front에서 적절한 절점을 직접 생성하여 바로 삼각 요소를 구성하게 된다. Front에서 생성된 절점은 인접 절점들이 있는지 검색하여 인접 절점이 있다면 생성된 절점은 삭제되어지며 인접 절점이 삼각 요소를 위한 나머지 한 점으로 채택되어진다. Front는 외부 경계와 교차되어지지 않아야 하며 또한 연속된 Front를 효율적으로 관리하기 위해 list 자료 구조를 활용하였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.17
no.1
/
pp.1-10
/
2004
Adaptive finite element analysis, in which its solution error meets with the user defined allowable error, is recently used to improve the reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and the other is the reconstruction of finite elements. In the (p-method, an element size is controlled by relocating of nodal positions (r-method) and the order of an element shape function is determined by the hierarchical polynomial (p-method) corresponding to the clement solution error by the enhanced SPR. In order to show the effectiveness and the accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.31
no.4
/
pp.26-34
/
2003
In this paper, a novel technique is proposed to arbitrarily activate the nodal points in finite element model through the meshless approximation methods such as MLS(moving least squares method), and theoretical investigations are carried out including the consistency and boundeness of numerical solution to prove the validity of the proposed method. By using the proposed node activation technique, one can activate and handle only the concerned nodes as unknown variables among the large number of nodal points in the finite element model. Therefore, the proposed technique has a great potential in design and reanalysis procedure.
Journal of the Computational Structural Engineering Institute of Korea
/
v.14
no.1
/
pp.29-34
/
2001
구조물설계에 있어서 영향선은 최대반력, 최대전단력, 최대휨모멘트 등을 계산하는데 아주 유용하게 사용된다. 모멘트분배법, 인도행렬법, 전달행렬법, 그리고 Muller-Breslau 원리에 의한 단순보와 연속보의 영향선은 잘 알려져 있고 또 교량공학에서 널리 사용되고 있다. 그러나 변위를 허용하는 특별한 구조물의 영향선을 계산할 경우에는 약간의 어려움이 있다. 이 연구에서는 절점변위를 허용하는 문형라멘의 영향선을 전달행렬법에 의하여 구하고 유한요소법에 의하여 얻은 영향선과 비교하였고 그 결과는 좋은 일치를 보이고 있다.
Kim, Do Nyeon;Kim, Seung Jo;Ji, Yeong Beom;Jo, Jin Yeon
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.31
no.4
/
pp.35-43
/
2003
In this paper, an efficient computational algorithm for the implementation of the newly proposed node activation technique is presented, and its computational aspects are thoroughly investigated. To verify the validity, convergence, and efficiency of the node activation technique, various numerical examples are worked out including the problems of Poisson equation, 2D elasticity problems, and 3D elasticity problems. From the numerical tests, it is verified that one can arbitrarily activate and handle the nodal points of interest in finite element model with very little loss of the numerical accuracy.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.308-313
/
2009
본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 수치기법이 제시한다. 이동하는 경계의 자유로운 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 사용하였으며, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입했다. 지배방정식은 안정성이 높은 음해법(implicit method)을 이용하여 차분하였다. 미분의 특이성을 갖는 이동경계를 포함한 반무한 융해문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.12
no.1
/
pp.47-56
/
1999
최근 요소망의 구성없이 공학적인 문제의 해석이 가능한 무요소법이 많은 학자들에 의하여 제안되고 이에 관한 집중적인 연구가 이루어지고 있다. 본 연구에서는 갤러킨 정식화에 의한 무요소법을 고체역학적인 문제에 적용하여 이의 특성을 규명하고자 하였다. 특히 일반적으로 사용되고 있는 몇가지 가중 함수를 선정하여 이들이 해석결과에 미치는 특성과 절점 배치방법 및 가중 함수의 영향 영역 변화에 따른 해의 정확도 등을 서로 비교하고 검토하였다. 연구결과로 가중 함수의 형태와 영향 영역의 크기, 기정 함수의 차수와 절점 배치방법 등은 서로 상관관계를 갖고 해의 정확도에 크게 영향을 미침을 확인할 수 있었고 이의 적절한 선정은 무요소해석의 중요한 요건임을 알 수 있었다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.15
no.1
/
pp.21-32
/
2002
In general, the response spectrum analysis method (R.S.A) is widely used for seismic analysis of building structure. But, it is not common to apply R.S.A for the analysis of structural vibration caused by dynamic loads of equipments, machines and moving leads, etc. The time history analysis method(T.H.A) for the vibration analysis, compared with R.S.A, is very complex, difficult and time consuming. So the application of R.S.A, that is convenient to calculate maximum responses for structural vibration, is proposed in this study. At first, the procedure for the application of the R.S.A to calculate of the maximum vibration response induced by dynamic load applied on the single point is described. And then, the process, which can save the time and the memory for calculation of the maximum vibration response induced by dynamic loads on the multi-point is proposed, and the maximum structural response caused by moving loads are obtained. Lastly, the accuracy of the proposed method is verified by comparing the results of R.S.A to T.H.A for some example models.
Journal of the Computational Structural Engineering Institute of Korea
/
v.22
no.4
/
pp.315-322
/
2009
This paper presents a novel numerical method based on the extended moving least squares finite difference method(MLS FDM) for solving 1-D Stefan problem. The MLS FDM is employed for easy numerical modelling of the moving boundary and Taylor polynomial is extended using wedge function for accurate capturing of interfacial singularity. Difference equations for the governing equations are constructed by implicit method which makes the numerical method stable. Numerical experiments prove that the extended MLS FDM show high accuracy and efficiency in solving semi-infinite melting, cylindrical solidification problems with moving interfacial boundary.
Journal of the Computational Structural Engineering Institute of Korea
/
v.22
no.5
/
pp.411-420
/
2009
This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.