• Title/Summary/Keyword: 절연요소

Search Result 171, Processing Time 0.028 seconds

A Study of the Voltage drops computation program on multi-distributed random loads (다중 분산부하 전압강하산정 프로그램 연구)

  • Kang, Cha-Nyeong;Kwon, Sae-Hyuk;Cho, Sung-Pil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.37-42
    • /
    • 2006
  • The voltage drop in electrical circuits causes a heat accumulation of wiring. This heat could change the specific character of an insulator and deteriorate the dielectric strength so that it could affect an electric leakage, an electric ant a power failure and a fire caused by the short circuit. Therefore optimal design for voltage drop in electrical wiring became an important factor to ensure the safety and economical efficiency of electrical facilities. So in this paper, I analyzed consequences that voltage drop affects in electrical wiring in multi-distributed system used for low electrical system such as road lights, Building, subway station which needs securities for the public society. And I proposed voltage drops computation program and optimal design to ensure the safety and economical efficiency.

  • PDF

Electric Field Distribution according to Gradient of Electrode in EHV Insulators of XLPE (침전극 기울기에 따른 초고압 절연체 XLPE의 전계분포)

  • Ahn, B.C.;Park, H.D.;Byeon, D.G.;Lee, J.P.;Kim, G.Y.;Ryu, B.H.;Chae, H.I.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.79-80
    • /
    • 2006
  • 본 논문에서는 초고압전력용 케이블에서 절연재료로 사용되고 있는 가교폴리에틸렌 내부(XLPE)에 침투된 침전극의 기울기변화에 따른 XLPE의 전계분포를 경계요소법에 의한 3차원 시뮬레이션 프로그램을 통하여 해석하여, 약 $20^{\circ}$의 기울기에서 전계가 집중되는 현상을 확인하였다.

  • PDF

A study on the structure of Si-O-C thin films with films size pore by ICPCVD (ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.477-480
    • /
    • 2002
  • Si-O-C(-H) thin film with a tow dielectric constant were deposited on a P-type Si(100) substrate by an inductively coupled plasma chemical vapor deposition (ICPCVD). Bis-trimethylsilymethane (BTMSM, H$_{9}$C$_3$-Si-CH$_2$-Si-C$_3$H$_{9}$) and oxygen gas were used as Precursor. Hybrid type Si-O-C(-H) thin films with organic material have been generated many voids after annealing. Consequently, the Si-O-C(-H) films can be made a low dielectric material by the effect of void. The surface characterization of Si-O-C(-H) thin films were performed by SEM(scanning electron microscope). The characteristic analysis of Si-O-C(-H) thin films were performed by X-ray photoelectron spectroscopy (XPS).

  • PDF

Modal Analysis of an Ultrasonic Tool Horn for RFID TAG Micro-pattern Forming (RFID TAG 미세패턴 성형을 위한 공구혼 진동해석)

  • Kim, Kang-Eun;Lee, Bong-Gu;Choi, Sung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.652-658
    • /
    • 2016
  • In this paper, the theoretical research and simulation using the Finite Element Method (FEM) to design and form a micro-pattern for an ultrasonic horn is described. The present method is based on an initial design estimate obtained by FEM analysis. The natural and resonant frequencies required for the ultrasonic tool horn used for forming the fine pattern were predicted by finite element analysis. FEM analysis using ANSYS S/W was used to predict the resonant frequency for the optimum technical design of the ultrasonic horn vibration mode shape. When electrical power is supplied to the ultrasonic transducer, it is converted into mechanical movement energy, leading to vibration. The RFID TAG becomes the pattern formed on the insulating sheet by using the longitudinal vibration energy of the ultrasonic tool horn. The FEM analysis result is then incorporated into the optimal design and manufacturing of the ultrasonic tool horn.

Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers (SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석)

  • 김옥삼;구본권;김일수;김인권;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

Analysis of the residual stress as the thickness of thin films and substrates for flexible CIGS solar cell (연성 CIGS 태양전지의 기판과 박막층의 두께에 따른 잔류응력해석)

  • Han, Yoonho;Lee, Minsu;Um, Hokyung;Kim, Donghwan;Yim, Taihong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.2-116.2
    • /
    • 2011
  • 연성 CIGS 태양전지를 제작하기 위해서는 휘어지는 연성 기판재의 적용이 반드시 필요하다. 상용되는 연성 기판재로는 플라스틱, 폴리이미드, 금속재가 있다. 그러나 플라스틱과 폴리이미드는 고효율의 CIGS 흡수층을 제조하기 위한 $500{\sim}600^{\circ}C$의 공정에 접합하지 못하다. 금속 기판재의 경우는 몰리브데늄, 알루미늄, 티타늄, 크롬강, 스테인레스강, 합금재 등이 있다. 이러한 금속 기판재 중에서 Fe-Ni 합금재는 Ni 함량의 변화에 따라 기계적, 자기적, 열팽창 특성이 다르게 나타나는 것으로 알려져 있다. 선행 연구에서 CIGS 태양전지의 기판재로 열팽창 계수가 박막층과 유사한 SUS400번 계열과 Fe-52Ni이 적합하다는 것을 확인 하였다. 따라서 본 연구에서는 유한요소해석(Finite element analysis) 프로그램인 Algor를 이용하여 CIGS solar cell을 설계하고 Fe-52Ni 기판재와 절연층인 SiO2, 흡수층인 CIGS의 두께에 따른 Cell의 잔류응력을 해석하였다.

  • PDF

Active Vibration Control Using Piezostack Based Mount (압전작동기 마운트를 이용한 능동진동제어)

  • Nguyen, Vien-Quoc;Choi, Sang-Min;Paeng, Yong-Seok;Han, Young-Min;Choi, Seung-Bok;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.386-392
    • /
    • 2008
  • This paper presents active vibration control performance of a hybrid mount. The proposed hybrid mount is devised by adopting both piezostack as an active actuator and rubber as a passive element. After experimentally identifying actuating force characteristics of the piezostack and dynamic characteristics of the rubber, the hybrid mount was designed and manufactured. Subsequently, a vibration control system with a specific mass loading is constructed, and its governing equations of motion are derived. In order to actively attenuate vibration transmitted from the base, a feedforward controller is formulated and experimentally realized. Vibration control responses are then evaluated in time and frequency domains.

A Finite Element Analysis on the Influence of Floating Shield of a Vacuum Interrupter to the Insulation (진공 인터럽터의 차폐판이 절연에 미치는 영향의 유한요소해석)

  • 최승길;심재학;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.113-116
    • /
    • 1998
  • This study should investigate to what extent the electric field of a vacuum interrupter might be influenced by the electric potential of floating arc shield. The electric potentials of floating shield and electric fields of a vacuum interrupter are analysed by a finite element method against variation of gap distances from 1mm to 12mm. The electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field of a vacuum interrupter with floating shield is nearly same to that without shield at shorter gap distance(below 5mm), however at larger gaps a significant increment of electric field is achieved in interrupter with shield companying with model without shield, which is due to the influence of charged floating shield.

  • PDF

Thermal Management of a Nickel/Metal Hydride Battery (Nickel/Metal Hydride 전지의 열관리기술 개발)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.667-672
    • /
    • 1997
  • Thermal behavior of high capacity Nickel/Metal hybride battery in analyzed using the NISA software which is based on the three dimensional finite element method. Differential energy balance equation is used for the conduction heat transfer of the battery, while convective heat transfer equation is used for the interface between the battery and air. Heat generation rate and convective heat transfer coefficient are tested as variables to investigate thermal behavior, and the generalized equation for maximum temperature inside the battery is developed. The abrupt rise of the battery temperature due to the quick charge or discharge can be prevented from the use of metallic cooling fin. In addition, temperature augmentation of the battery is negligible when the low thermal conductive and thin insulating material is used outside of the battery case.

  • PDF

Experimental Verification on Factors Affecting Core Resistivity Measurements (코어 비저항 측정에 미치는 영향요소에 대한 실험적 고찰)

  • Kim, Yeong Hwa;Choe, Ye Gwon
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.225-233
    • /
    • 1999
  • Electrical resistivity of a rock-sample is dependant on not only formation factor of rock itself but also many parameters such as fluid type, measuring device, temperature, water saturation, electrical contact between electrode and core section, induced polarization, and frequency of electric source. In this study, we attempt to verify various affecting factors in core resistivity measurements and to find a better environment for core resistivity measurement. Particularly great attention has been paid to understanding the effects of temperature, water saturation, contact condition between sample and electrodes, and frequency of electric source. Precise measurement of resistivity can be achieved by utilizing silver paste for better contacts, taping samples for constant moisture contents, and using time-series resistivity data.

  • PDF