• Title/Summary/Keyword: 절삭주파수

Search Result 40, Processing Time 0.025 seconds

Indirect Cutting Force Measurement and Cutting Force Regulation Using Spindle Motor Current (주축모터 전류를 통한 절삭력의 간접 측정 및 절삭력 추종제어)

  • Kim, Gi D.;Kwon, Won T.;Chu, Chong N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.15-27
    • /
    • 1997
  • Quasti-static cutting force variations in milling process are measured indirectly using spindle motor current. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Magnitude of the spindle motor current is independent of cutting direction. The linear relationship between the cutting force and the spimdle motor RMS current at various spindle rotational speed is obtained. Frequency/ Voltage(F/V) converter voltage is measured to identify the spindle speed and to determine the cutting force at various spindle speeds. Overload on the tool during milling process can be detected using the proposed indirect cutting force measurement. Based on these measurements, cutting force is regulated at a constant level by feedrate control.

  • PDF

Tool Wear and Chatter Detection in Turning via Time-Series Modeling and Frequency Band Averaging (선삭가공에서 시계열모델 밑 주파수대역에너지법에 의한 공구마멸과 채터의 검출)

  • ;Y.S. Chiou;S.Y. Liang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.75-84
    • /
    • 1994
  • 기계가공프로세스에서 절삭공구의 마멸과 채터진동은 공작기계의 가동율과 생산성을 크게 저해하는 요인이 되고 있다. 본 연구에서는 공구마멸과 채터현상이 혼재하는 상황에서, 이들 두 현상을 동시에 검출하는데, AE 및 가속도센서에서 검출된 신호와 AR계수 및 주파수대역 평균에너지를 특징입력으로 하는 인공신경회로망을 이용하였다. 그 결과, 공구마멸과 채터현상에 대응하는 서로 다른 신호특징의 차이를 동시에 식별하는 데 인공신경 회로망의 유용성을 입증하였으며, 시계열모델의 AR계수(70 .approx. 90%)보다는 주파수대역에너지법의 평균에너지 (80 .approx. 100%)를 신경회로망의 특징입력으로 하는 경우가 높은 성공률을 나타내었다.

  • PDF

Feedrate Scheduling for High Speed Machining Based on an Improved Cutting Force Model (향상된 절삭력 모델을 이용한 고속 가공의 이송속도 스케줄링)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes an analytical model of off-line feed rate scheduling to obtain an optimum feed rate for high speed machining. Off-line feed rate scheduling is presented as an advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the feed rate scheduling model was developed using a mechanistic cutting force model using cutting-condition-independent coefficients. First, it was verified that cutting force coefficients are not changed with respect to cutting speed. Thus, the feed rate scheduling model using the cutting-condition-independent coefficients can be applied to set the proper feed rates for high speed machining as well as normal machining. Experimental results show that the developed fred rate scheduling model makes it possible to maintain the cutting force at a desired level during high speed machining.

  • PDF

Flank Wear Estimation Using Dynamic Cutting Force(l) (절삭력의 동적 성분을 이용한 플랭크마모의 평가(I))

  • Kwon, Y.K.;Oh, S.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.115-121
    • /
    • 1997
  • The in-process detection of the tool wear is one of the most important technologies in completely auto- matic operation of machine tool. In this research, using the tools having flank wear, the dynamic compo- nent of cutting forces is considered to be available for identifying the cutting process. In order to investi- gate this relation in detail, the cutting forces in turning of workpiece made of aluminum were measured by dynamometer of piezoelectric type, and the dynamic components of cutting force were analyzed. The fre- quency analysis, probability density analysis and RMS analysis of the dynamic components were carried out independently. Through the experiments, the characteristics of the tool system have a large effect on the dynamic component of cutting forces. As a result, it is shown that the dynamic cutting force was able to detect flank wear accurately.

  • PDF

Components Analysis of Surface Roughness in Turning Process by Frequency Analysis (주파수 분석에 의한 선삭면의 표면 거칠기 인자 해석)

  • Kim, Gyung-Nyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.184-191
    • /
    • 1996
  • The purpose of this paper is to investigate components of surface roughness in turning with respect to the tool configuration and the changes of working conditions. Tool configurations of SNMG120404, SNMG120408 and DNMG150404, DNMG150408 are used, and working conditions such as cutting speed 3nd feed are varied. That is, the changes of cutting speed and feed were 150, 200, 250 m/min and 0.05, 0.1, 0.3 mm/rev, respectively. From the results obtained by the frequency analysis with spectrum, it is noted that the surface roughness was influenced most significantly by the feed. It is also observed that the vibration of bite had an effect on both the surface roughness and the surface waviness. Moreover, the influence of surface roughness increases as the feed decreases. Lastly, the vibration of the spindle was found to have little influence on the surface roughness in normal cases and the tool configuration was not the components of the surface roughness.

  • PDF

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

An Analysis on the Tooth Passing Frequency using End-milling Force (엔드밀 가공시 절삭력을 이용한 공구날 주파수 분석법)

  • Kim, Jong-Do;Yoon, Moon-Chul;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The mode analysis of end-milling was introduced using recursive parametric modeling. Also, a numerical mode analysis of FRF in end-milling at different conditions was performed systematically. In this regard, a REIVM(recursive extended instrumental variable method) modeling algorithm was adopted and natural modes of real and imaginary part were discussed. This recursive approach can be used for the on-line system identification and monitoring of an end-milling for this purpose. For acquiring a cutting force, an experimental practice was performed. And these end-milling forces were used for the calculation of FRF(Frequency response function) and its mode analysis. Also, the FRF was analysed for the prediction of end-milling system. As a results, this algorithm was successful in each condition for the detection of natural modes of end-milling. After numerical analysis of the FRF, the tooth passing frequency was discriminated in their FRF, power spectrum and mode calculation.

Circular Polarization Patch Antenna with GPS and GLONASS Stopband for Satellite Communication (GPS, GLONASS 저지대역을 갖는 위성통신용 원편파 패치안테나)

  • Kim, Joo-Suk;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.245-252
    • /
    • 2018
  • In this paper, the dual band circular polarization patch antenna was designed by using band rejection characteristics of CSRR structure for geostationary satellites. A quadrangular CSRR structure was etched on the ground at the rear of the patch antenna's feed to obtain band rejection characteristics in between the receiving frequency band(1525~1559MHz) and transmission band(1626.5~1660.5MHz), and the corner of the patch antenna was truncated to enable circular polarization. It was confirmed that the resonant frequency of the patch antenna differs according to the size anc location of the CSRR and cirular polarization characteristics with simulation and measurement results. Measurement results shows the gain of about 0.2dB and 1.5dB in the TX and RX band.

A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal (절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구)

  • 김정두;이은복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

Elliptical Vibration Cutting with Variable Trajectory for Ultra-precision Micro-Machining (초정밀 미세가공을 위한 궤적 변화에 따른 타원 궤적 진동 절삭)

  • Kim, Gi-Dae;Loh, Byoung-Gook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.52-58
    • /
    • 2007
  • A cutting device capable of generating various shapes of the cyclic elliptical trajectory of a cutting tool was proposed and micro v-grooving experiments were performed to investigate the characteristics of elliptical vibration cutting (EVC). The proposed cutting device is comprised of a pair of parallel piezoelectric actuators with which harmonic voltages of varying phase difference and magnitude are supplied, creating various shapes of the elliptical tool path. The attributes of the elliptical locus involving the direction of the axis of an ellipse, the rotational direction and amplitudes of a trajectory were fine-tuned for stable operation of the EVC. The EVC characteristics performed with brass and copper revealed reduction in the cutting resistance and suppression of burr formation, resulting in the enhancement of form accuracy of machined micro-features. While the effect of the EVC increases with the increase of excitation frequency and the amplitude, it is found that a change in the cutting force decreases as the amplitude of an elliptical locus increases.