• Title/Summary/Keyword: 절삭공정

Search Result 275, Processing Time 0.02 seconds

A study on the simulation for chatter vibration stability improvement of end milling process (엔드밀링 채터 안정성 개선을 위한 시뮬레이션)

  • Hwang, Joon;Lee, Won-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • End milling process is one of the broadly used manufacturing process for precision machined parts and products. Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter vibration is a type of machining self-excited vibration which originated from the variation in cutting forces and the flexibility of the machine tool structure. Even though lots of cutting tooling methods are developed and used in machining process, precise analysis of cutting tooling effect in view of chatter vibration behavior. This study presents numerical and experimental approaches to verify and effects of various cutting parameters to affect to chatter vibration stability. Acquired knowledge from this study will apply the optimal cutting conditions to improve a machining process.

A Study on Waste Reduction of Water Soluble Cutting Fluids by UV-free Reflecting Reactor (절삭공정에서 UV 자유반사 반응조를 사용한 폐절삭유의 감량화 연구)

  • Jung, Suk-Ho;Hwang, Hyeon-Uk;Hong, Sang-Yeon;Kim, Hyun-Su;Saleem, Khan Muhamad;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.609-615
    • /
    • 2008
  • In this study, the design of UV-free reflecting reactor was studied to enhance the cutting fluid life for cutting machine. And also, the stability of cutting fluid with addition of biocide in cutting fluid and without biocide was compared with respect to the cutting fluid concentration, pH changes and microorganisms. Low number of microorganism was observed in the cutting fluid after UV-free reflecting treatment as compare to the cutting fluid which was added biocide and just cutting fluid alone. PH of the cutting fluid after UV-free reflecting treatment was about 9$\sim$8.5 while others were observed considerably low. The oil contents of cutting fluid which was added biocied and pure cutting fluid were almost degraded with the passage of time. However, in case of UV-free reflecting reactor, 4$\sim$3.5 Brix oil contents were observed in the cutting fluid.

Experimental Investigations of Sideward Burr Formation in 3-Dimensional Cutting (3차원 절삭에서 발생하는 측면버에 관한 실험적 연구)

  • Gi-Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.164-169
    • /
    • 1998
  • Burrs can be formed on the feed marks ridges as well as on the edges of the machined parts in machining operations. These burrs are undesirable in terms of the surface quality, the precise dimensioning of machined parts and the safety of operators. This paper experimentally investigates the sideward burr formation in 3-dimensional cutting. In particular, the experimental relationships between the size of sideward burr and the cutting parameters are established and suggestions are made for minimizing sideward burr formation.

  • PDF

Peak force control in the milling process (엔드밀 공정에서 최대 절삭력 제어)

  • 김홍겸;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.188-191
    • /
    • 2001
  • Generally, main factors of tool damage are cutting speed, feed rate and depth of cut. The increase of those factors can cause tool breakage or worsen product quality such as machining accuracy deterioration. Those three factors are concerned with cutting force. Cutting force reaches at its maximum value when cutter blade cuts away the object directly, and it is the time when tool damages are at high probability. In this study, we detect the maximum cutting force affecting tool damage and control the maximum cutting force based on the measured peak force.

  • PDF

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

simultaneous Control of Position and Cutting Force Based o Multi-input Multi-output Model in Ball End Milling Process (볼엔드밀 절삭공정에서 위치 및 절삭력 동시제어)

  • 이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • This research proposes a new advanced control method and demonstrates its realization in part. By incorporating shape machining and cutting force control at a time, this integrated scheme makes it possible to machine a desired shape and avoid the trouble of programming feedrate and spindle speed before machining and also reduce the shape error. The main idea proposed to achieve those goals consists in giving commanded path and desired cutting force at the same time. which makes it possible for position and force controller to distribute the corresponding velocity of individual axes and main spindle by an appropriate interpolation. That indicates we can replace the built-in interpolator of commercial machine tools by the developed algorithm.

  • PDF

Materials for Spectacle lens cutting with Glass phase (유리상 첨가한 안경렌즈 절삭용 재료)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.145-148
    • /
    • 2001
  • SiC composites were developed by incorporating glass phase into SiC, in the light of improving mechanical properties of material for spectacle lens cutting. Specimens for spectacle lens cutting with glass phase as sintering additives have been fabricated by hot-pressing at $1810^{\circ}C$ for 2 hr under a pressure of 25 MPa. The fracture toughness and hardness of hot-pressed specimens were characterized and compared with previous works. Typical hardness and fracture toughness of materials for spectacle lens cutting were 12 GPa and $5.1MPa{\cdot}m^{1/2}$ respectively.

  • PDF

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측)

  • Chung, E.S.;Hwang, D.C.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF

Optimization of Machining Process Using an Adaptive Modeling and Genetic Algorithms(1) -Simulation Study- (적응 모델링과 유전알고리듬을 이용한 절삭공정의 최적화(I) -모의해석-)

  • Ko, Tae Jo;Kim, Hee Sool;Kim, Do Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.73-81
    • /
    • 1996
  • This paper presents a general procedure for the selection of the machining parameters for a given machine which provides the maximum material removal rate using a Genetic Algorithms(GAs). Some constraints were given in order to achieve desired surface integrity and cutting tool life conditions as wel as to protect machine tool. Such a constrained problem can be transformaed to unconstrained problem by associating a penalty with all constraint violations and the penalties are included in the function evaluation. Genetic Algorithms can be used for finding global optimum cutting conditions with respect to the above cost function transformed by pennalty function method. From the demonstration of the numerical results, it was found that the near optimal conditions could be obtained regardless of complex solution space such as cutting environment.

  • PDF

TiMo 합금타겟을 이용하여 음극 아크 공정으로 제조된 TiMoN 박막의 기초실험 및 분석

  • Kim, Seong-Hwan;Yang, Ji-Hun;Byeon, In-Seop;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.94.1-94.1
    • /
    • 2017
  • 최근 공구산업은 산업 발전으로 특수합금들이 발달하면서 이를 가공할 수 있는 새로운 절삭공구소재들이 개발되어 지고 있다. 또한 공구소재보다 코팅개발이 상대적으로 더욱 효과적이기 때문에 코팅 기술 개발이 활발히 진행되고 있다. 최근 일본에서는 새로운 코팅층 물질 개발보다는 기존의 코팅물질을 조합하거나 개량하여 성능을 향상시키는 추세이다. 또한 다기능 절삭 공구를 지속적으로 사용하는 추세에 따라 공구설계의 새로운 솔루션이 요구된다. 예를 들어 TiN 코팅과 추가 요소를 합금하면 효과적인 경도, 내마모성 등을 향상시키며, TiAlN, TiSiN 등을 예로 들 수 있다. 반면, 기존 TiN에 Mo가 첨가된 TiMoN 박막은 특성화하기 위한 노력이 매우 제한적이었다. Mo가 함유된 코팅층의 특징은 낮은 마찰 계수를 갖는다. 이는 Mo이 공기중의 산소와 반응하여 MoO3를 형성하기 때문이다. 본 연구에서는 TiMo합금 타겟을 음극 아크 증착공정을 이용하여 기초실험을 진행하고 분석평가를 진행하였다. 공정조건은 본 실험실에서 도출한 TiN의 기본공정조건을 바탕으로 기초실험을 진행하였으며, 시편은 스테인리스 강판(SUS304)을 사용하였다. 기초분석은 SEM, EDS, XRD, 초미소경도를 이용하였다. 처음 TiMo합금 타겟을 이용하여 기초실험과 분석을 진행한 결과 TiN과 비슷할 것으로 예상한 것과는 다른 결과가 관찰되었으며, 최적화 된 공정도출을 위한 향후 실험을 계획중이다.

  • PDF