• Title/Summary/Keyword: 절리특성

Search Result 371, Processing Time 0.026 seconds

Image Enhancement of the Weathered Zone and Bedrock Surface with a Radial Transform in Engineering Seismic Data (엔지니어링 탄성파자료에서 방사변환을 통한 풍화대 및 기반암 표면의 영상강화)

  • Kim, Ji-Soo;Jeon, Su-In;Lee, Sun-Joong
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • A difficulty encountered in engineering seismic mapping is that reflection events from shallow discontinuities are commonly overlapped with coherent noise such as air wave, direct waves, head waves, and high-amplitude surface waves. Here, the radial trace transform, a simple geometric re-mapping of a trace gather (x-t domain) to another trace gather (v-t domain), is applied to investigate the rejection effect of coherent linear noises. Two different types of data sets were selected as a representative database: good-quality data for intermediate sounding (hundreds of meters) in a sedimentary basin and very noisy data for shallow (${\leq}50m$) mapping of the weathered zone and bedrock surface. Results obtained with cascaded application of the radial transform and low-cut filtering proved to be as good as, or better than, those produced using f-k filtering, and were especially effective for air wave and direct wave. This simple transform enables better understanding of the characteristics of various types of noise in the RT domain, and can be generally applied to overcoming diffractions and back-scatterings caused by joints, fractures, and faults commonly that are encountered in geotechnical problems.

A Study on the Characteristics of Dynamic Elastic Modulus in GyeongGi Gneiss Complex by Down Hole Test (하향식 탄성파를 통한 경기 편마암의 동탄성 특성연구)

  • Lee, Byok-Kyu;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.371-379
    • /
    • 2008
  • In this study, seismic elastic wave and dynamic elastic modulus properties are investigated by down-hole seismic tests that were applied to the 11 gneiss area. The research results show that the realtionship between the two properties are $V_s=0.5589{\times}V_p$ in gneiss. The relationship between the two properties are separated into two groups. Group 1 is influenced mainly by the specific gravity of rock, but group 2 is influenced mainly by the joint aperture. As weathering progresses, group 1 clearly shows a decreasing tendency. In fresh and slightly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed in linear line but in moderately-highly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed curve as a quadratic function. Correlations between $V_s$ and dynamic elastic modulus are analyzed similar with a $V_p$ case.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

The Geology and Variations of Soil Properties on the Slow-moving Landslide in Yangbuk-myun, Gyungju-si, Gyeongsangbuk-do (경상북도 경주시 양북면 땅밀림지의 지질 및 토양물리성의 변화)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.216-223
    • /
    • 2019
  • This study was conducted to measure the changes in the geological and soil properties following slow-moving landslide events in Yangbuk-myun and Gyungju-si, Gyeongsangbuk-do, South Korea. The geological characteristics of the study site comprised black shale in the Gyeongsang nodal group formed in the Cretaceous period and quartz feldspar carcinoma in the east side with conglomerate in the Yeonil group formed in the Quaternary period. The study site exhibited the geologic characteristics of a slow-moving landslide with severely weathered rocks. The maximum collapsing depth of the slow-moving landslide was 12.0 m with colluvial deposits. The strike and joint aspects in the slope areas of the slow-moving landslides were $N46^{\circ}E$ in lower slope and $N62^{\circ}E$ in upper slope, respectively. Soil hardness of ${\leq}20cm$ deep was not measured because of the completely disturbed soil resulting from soil creeping. Soil from 25 to 90 cm deep was 1.4-4.7 times softer in the slow-moving landslide areas than in the undisturbed or natural forests. Soil bulk density was $1.24-1.29g/cm^3$ in land creep areas. Soil bulk in both areas was 1.6 times denser than that in the natural forest. The soil pore space was 51.5-53.3% in the land creep areas. The values are 1.3-1.4 times lower than those within the natural forest. Black shale areas showed the lowest coefficient of permeability (8.75 E-06 cm/s) and mesopore ratio (pF 2.7: 9.8%) compared with those resulting from other study areas.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

Characteristic Analysis of Shear Strength of Rock Slope Discontinuity in Yangsan Fault System (양산단층대 암반비탈면에 분포하는 불연속면의 전단강도 특성분석)

  • Lee, Hak-Ju;Kim, Chang-Ho;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.11-22
    • /
    • 2019
  • This study was conducted to identify the causes of the unusually high number of rock slope failures during an expressway construction in Yangsan fault system. The shear strength (cohesion and internal friction angle) of 128 slopes of discontinuities including bedding, joint, and fault planes were re-evaluated through the examination of face mapping and back analysis. The re-evaluated values were analyzed and then compared with the existing data and values used in the design. As a result, the re-evaluated cohesion and friction angles were very low compared to the existing data and the values applied in the design. This incongruity was pointed as the primary reason for the rock slopes failures during the construction. This may be related to the inherent features of clastic sedimentary rocks in the study area, and the discontinuities in the sedimentary rocks in this region played a significant role. Especially, bedding discontinuity showed a big difference compared to the existing data. The shear strength depended on the type of discontinuity in case of clay filled in discontinuity. However, shear strength was independent on the type of discontinuity in case of shattered materials filled in discontinuity.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.

Interpretation Method of Eco-Cultural Resources from the Perspective of Landscape Ecology in Jeju Olle Trail (제주 올레길 생태문화자원 경관생태학적 해석기법 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.128-140
    • /
    • 2021
  • This study applied the theory of Landscape Ecology to representative resources of Jeju Olle-gil, which is a representative subject of walking tourism, to identify ecological characteristics and to establish a technique for landscape ecological analysis of Olle-gil resources. Jeju Olle Trail type based on the biotope type, major land use, vegetation status around Olle Trail and roads were divided into 12 types. Based on the type of ecological tourism resource classification, the Jeju Olle-gil walking tourism resource classification was divided into seven types of natural resources and seven types of humanities resources, and each resource was characterized by Geotope, Biotope, and Anthropopope, just like the landscape ecology system. Geotope resources are strong in landscape characteristics such as coast and beach, rocks, bedrocks, waterfalls, geology and Jusangjeolli Cliff, Oreum and craters, water resources, and landscape viewpoints. The Biotope resources showed strong ecological characteristics due to large tree and protected tree, Gotjawal, forest road and vegetation communities, biological habitat, vegetation landscape view point. Antropotope include Culture of Jeju Haenyeo and traditional culture, potting and lighthouses, experience facilities, temples and churches, military and beacon facilities, other historical and cultural facilities, and cultural landscape views. Jeju Olle Trail The representative resources for each type of Jeju Olle Trail are coastal, Oreum, Gotjawal, field and Stonewall Fencing farming land, Jeju Village and Stone wall of Jeju. In order to learn about the components and various functions of the resources representing the Olle Trail's ecological culture, the landscape ecological technique was interpreted. Looking at the ecological and cultural characteristics of coastal, the coast includes black basalt rocks, coastal vegetation, coastal grasslands, coastal rock vegetation, winter migratory birds and Jeju haenyeo. Oreum is a unique volcanic topography, which includes circular and oval mountain bodies, oreum vegetation, crater wetlands, the origin and legend of the name of Oreum, the legend of the name of Oreum, the culture of grazing horses, the use of military purposes, the object of folk belief, and the view from the summit. Gotjawal features rocky bumps, unique microclimate formation, Gotjawal vegetation, geographical names, the culture of charcoal being baked in the past, and bizarre shapes of trees and vines. Field walls include the structure and shape of field walls, field cultivation crops, field wall habitats, Jeju agricultural culture, and field walls. The village includes a stone wall and roof structure built from basalt, a pavilion at the entrance of the village, a yard and garden inside the house, a view of the lives of local people, and an alleyway view. These resources have slowly changed with the long lives of humans, and are now unique to Jeju Island. By providing contents specialized for each type of Olle Trail, tourists who walk on Olle will be able to experience the Olle Trail in depth as they learn the story of the resources, and will be able to increase the sustainable use and satisfaction of Jeju Olle Trail users.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.